6 research outputs found

    RFA Guardian: Comprehensive Simulation of Radiofrequency Ablation Treatment of Liver Tumors

    Get PDF
    The RFA Guardian is a comprehensive application for high-performance patient-specific simulation of radiofrequency ablation of liver tumors. We address a wide range of usage scenarios. These include pre-interventional planning, sampling of the parameter space for uncertainty estimation, treatment evaluation and, in the worst case, failure analysis. The RFA Guardian is the first of its kind that exhibits sufficient performance for simulating treatment outcomes during the intervention. We achieve this by combining a large number of high-performance image processing, biomechanical simulation and visualization techniques into a generalized technical workflow. Further, we wrap the feature set into a single, integrated application, which exploits all available resources of standard consumer hardware, including massively parallel computing on graphics processing units. This allows us to predict or reproduce treatment outcomes on a single personal computer with high computational performance and high accuracy. The resulting low demand for infrastructure enables easy and cost-efficient integration into the clinical routine. We present a number of evaluation cases from the clinical practice where users performed the whole technical workflow from patient-specific modeling to final validation and highlight the opportunities arising from our fast, accurate prediction techniques

    RFA Guardian

    Get PDF
    The RFA Guardian is a comprehensive application for high-performance patient-specific simulation of radiofrequency ablation of liver tumors. We address a wide range of usage scenarios. These include pre-interventional planning, sampling of the parameter space for uncertainty estimation, treatment evaluation and, in the worst case, failure analysis. The RFA Guardian is the first of its kind that exhibits sufficient performance for simulating treatment outcomes during the intervention. We achieve this by combining a large number of high-performance image processing, biomechanical simulation and visualization techniques into a generalized technical workflow. Further, we wrap the feature set into a single, integrated application, which exploits all available resources of standard consumer hardware, including massively parallel computing on graphics processing units. This allows us to predict or reproduce treatment outcomes on a single personal computer with high computational performance and high accuracy. The resulting low demand for infrastructure enables easy and cost-efficient integration into the clinical routine. We present a number of evaluation cases from the clinical practice where users performed the whole technical workflow from patient-specific modeling to final validation and highlight the opportunities arising from our fast, accurate prediction techniques.Peer reviewe

    Immunohistochemical and radiological characterization of wound healing in porcine liver after radiofrequency ablation

    No full text
    Background: Radiofrequency ablation (RFA) is a minimal invasive therapeutic option for patients with hepatocellular carcinoma or liver metastases. We investigated RFA-induced cellular changes in the liver of pigs. Material and Methods: Healthy pigs (n=18) were sacrificed between day 0 and 3 months after RFA. The wound healing process was evaluated by computed tomography (CT), chromotrope anilinblue (CAB) staining of large-scale and standard tissue sections. Immunohistochemistry (IHC) for heat shock protein 70, Caspase-3, Ki67, Reelin, Vinculin, Vimentin and αSMA was perfomed. Results: One day after RFA, CAB staining showed cell damage and massive hyperaemia. All IHC markers were predominantly expressed at the outer borders of the lesion, except Reelin, which was mainly detected in untreated liver regions. By staining for Hsp70, the heat stress during RFA was monitored, which was most distinct 1-2 days after RFA. CT revealed decreased lesion size after one week. Development of a Vimentin and α-SMA positive fibrotic capsule was observed. Conclusion: In the early phase signs of cell damage, apoptosis and proliferation are dominant. Reduced expression of Reelin suggests a minor role of hepatic stellate cells in the RFA zone. After one week myofibroblasts become prominent and contribute to the development of the fibrotic capsule. This elucidates the pathophysiology of RFA and could contribute to the future optimization of RFA procedures
    corecore