9,855 research outputs found
Large-Area, Low-Noise, High Speed, Photodiode-Based Fluorescence Detectors with Fast Overdrive Recovery
Two large-area, low noise, high speed fluorescence detectors have been built.
One detector consists of a photodiode with an area of 28 mm x 28 mm and a low
noise transimpedance amplifier. This detector has a input light-equivalent
spectral noise density of less than 3 pW/Hz^1/2, can recover from a large
scattered light pulse within 10 us, and has a bandwidth of at least 900 kHz.
The second detector consists of a 16 mm diameter avalanche photodiode and a
low-noise transimpedance amplifier. This detector has an input light-equivalent
spectral noise density of 0.08 pW/Hz^1/2, also can recover from a large
scattered light pulse within 10 us, and has a bandwidth of 1 MHz.Comment: Submitted to Review of Scientific Instrument
Greybody factor for the BTZ black hole and a 5D black hole
We study the 5D black holes in the type IIB superstring theory compactified
on . Far from horizon, we have flat space-time. Near horizon,
we have . We calculate the
greybody factor of a minimally coupled scalar by replacing the original
geometry() by . In the
low-energy scattering, it turns out that the result agrees with the greybody
factor of the 5D black hole (or D1 + D5 branes)in the dilute gas approximation.
This confirms that the -theory() contains the
essential information about the bulk 5D black holes.Comment: some discussions are added, 15 Pages, No figure, RevTe
Diffusion of Neon in White Dwarf Stars
Sedimentation of the neutron rich isotope Ne may be an important
source of gravitational energy during the cooling of white dwarf stars. This
depends on the diffusion constant for Ne in strongly coupled plasma
mixtures. We calculate self-diffusion constants from molecular dynamics
simulations of carbon, oxygen, and neon mixtures. We find that in a
mixture does not differ greatly from earlier one component plasma results. For
strong coupling (coulomb parameter few), has a modest
dependence on the charge of the ion species, .
However depends more strongly on for weak coupling (smaller
). We conclude that the self-diffusion constant for
Ne in carbon, oxygen, and neon plasma mixtures is accurately known so
that uncertainties in should be unimportant for simulations of
white dwarf cooling.Comment: 6 pages, 5 figures, minor changes, Phys. Rev. E in pres
Where is the Information Stored in Black Holes?
It is shown that many modes of the gravitational field exist only inside the
horizon of an extreme black hole in string theory. At least in certain cases,
the number of such modes is sufficient to account for the Bekenstein-Hawking
entropy. These modes are associated with sources which carry Ramond-Ramond
charge, and so may be viewed as the strong coupling limit of D-branes. Although
these sources naturally live at the singularity, they are well defined and
generate modes which extend out to the horizon. This suggests that the
information in an extreme black hole is not localized near the singularity or
the horizon, but extends between them.Comment: 21 pages, reference corrected and comment adde
Crystallization of Carbon Oxygen Mixtures in White Dwarf Stars
We determine the phase diagram for dense carbon/ oxygen mixtures in White
Dwarf (WD) star interiors using molecular dynamics simulations involving liquid
and solid phases. Our phase diagram agrees well with predictions from Ogata et
al. and Medin and Cumming and gives lower melting temperatures than Segretain
et al. Observations of WD crystallization in the globular cluster NGC 6397 by
Winget et al. suggest that the melting temperature of WD cores is close to that
for pure carbon. If this is true, our phase diagram implies that the central
oxygen abundance in these stars is less than about 60%. This constraint, along
with assumptions about convection in stellar evolution models, limits the
effective S factor for the C()O reaction to
S_{300} <= 170 keV barns.Comment: 4 pages, 2 figures, Phys. Rev. Lett. in pres
A human protein required for the second step of pre-mRNA splicing is functionally related to a yeast splicing factor
We have identified a human splicing factor required for the second step of pre-mRNA splicing. This new protein, hPrp18, is 30% identical to the yeast splicing factor Prp18. In HeLa cell extracts immunodepleted of hPrp18, the second step of pre-mRNA splicing is abolished. Splicing activity is restored by the addition of recombinant hPrp18, demonstrating that hPrp18 is required for the second step. The hPrp18 protein is bound tightly to the spliceosome only during the second step of splicing. hPrp18 is required for the splicing of several pre-mRNAs, making it the first general second-step splicing factor found in humans. Splicing activity can be restored to hPrp18-depleted HeLa cell extracts by yeast Prp18, showing that important functional regions of the proteins have been conserved. A 90-amino-acid region near the carboxyl terminus of hPrp18 is strongly homologous to yeast Prp18 and is also conserved in rice and nematodes. The homology identifies one region important for the function of both proteins and may define a new protein motif. In contrast to yeast Prp18, hPrp18 is not stably associated with any of the snRNPs. A 55-kD protein that cross-reacts with antibodies against hPrp18 is a constituent of the U4/U6 and U4/U6 . U5 snRNP particles
Strong Correlations in Actinide Redox Reactions
Reduction-oxidation (redox) reactions of the redox couples An(VI)/An(V),
An(V)/An(IV), and An(IV)/An(III), where An is an element in the family of early
actinides (U, Np, and Pu), as well as Am(VI)/Am(V) and Am(V)/Am(III), are
modeled by combining density functional theory with a generalized Anderson
impurity model that accounts for the strong correlations between the 5f
electrons. Diagonalization of the Anderson impurity model yields improved
estimates for the redox potentials and the propensity of the actinide complexes
to disproportionate.Comment: 17 pages, 10 figure, 3 tables. Corrections and clarifications; this
version has been accepted for publication in The Journal of Chemical Physic
- …