158 research outputs found

    One- and Two-Dimensional CP/MAS 13C NMR Analyses of Dynamics in Poly(2-hydroxypropyl ether of bisphenol-A) (FUNDAMENTAL MATERIAL PROPERTIES-Molecular Dynamic Characterisitics)

    Get PDF
    The dynamics of amorphous poly(2-hydroxypropyl ether of bisphenol-A) (PHR), quenched from the melt, has been investigated by one- and two-dimensional solid-state 13C NMR spectroscopy. CP/MAS 13C NMR spectra from .150 to 180 oC give two specific features: (1) below 23 oC, resonance lines for CH carbons of phenylene rings split into two lines; (2) linewidths of resonance lines become broad at 20 - 50 oC above the glass transition temperature. The feature (1) indicates that phenylene C-H carbons exist in chemically different two sites at low temperatures. These two sites are probably associated with OH … hydrogen bond formation. The coalescence of the resonance lines at elevated temperatures is caused by flip motion of phenylene rings, which corresponds to the relaxation for PHR. The correlation time of the flip motion is analyzed by the two-site exchange model, and is found to follow the Arrhenius equation. The apparent activation energy is 51 kJ mol-1 by assuming an inhomogeneous correlation time distribution described by a Kohlrausch-Williams-Watts (KWW) function with an exponent of 0.2. The feature (2) is caused by the so-called motional broadening, which is originated by enhanced segmental motions. This dynamics corresponds to the relaxation for PHR and can be described by William-Landel-Ferry (WLF) equation. Two-dimensional CP/MAS 13C exchange NMR experiments confirm the existence of flip angle distribution as well as the distribution of correlation times of phenylene ring flip motion with a KWW exponent of 0.2

    Antibodies reactive with the N-terminal domain of Plasmodium falciparum serine repeat antigen inhibit cell proliferation by agglutinating merozoites and schizonts

    Full text link
    Copyright © American Society for Microbiology, Infection and Immunity, 67(4), 1999, 1821-1827, https://doi.org/10.1128/.67.4.1821-1827.1999The serine repeat antigen (sera) is a vaccine candidate antigen of Plasmodium falciparum. Immunization of mice with Escherichia coli-produced recombinant protein of the Sera N-terminal domain (SE47') induced an antiserum that was inhibitory to parasite growth in vitro. Affinity-purified mouse antibodies specific to the recombinant protein inhibited parasite growth between the schizont and ring stages but not between the ring and schizont stages. When Percoll-purified schizonts were cultured with the affinity-purified SE47'-specific antibodies, schizonts and merozoites were agglutinated. Indirect-immunofluorescence assays with unfixed parasite cells showed that SE47'-specific immunoglobulin G (IgG) bound to Sera molecules on rupturing schizonts and merozoites but the IgG did not react with the schizont-infected erythrocytes (RBC). Furthermore, double-fluorescence staining against SE47'-specific IgG and anti-human RBC membrane IgG showed that the Rbc membrane disappeared from SE47'-specific-IgG-bound schizonts after cultivation. These observations suggest that the SE47'-specific antibodies inhibit parasite growth by cross-linking Sera molecules that are associated with merozoites in rupturing schizonts with partly broken RBC and parasitophorous vacuole membranes, blocking merozoite release

    Detection of histidine-rich protein 2- and/or 3-deleted Plasmodium falciparum using the automated hematology analyzer XN-31: A proof-of-concept study

    Get PDF
    Tougan T., Hiyoshi F., Itagaki S., et al. Detection of histidine-rich protein 2- and/or 3-deleted Plasmodium falciparum using the automated hematology analyzer XN-31: A proof-of-concept study. Parasitology International 91, 102648 (2022); https://doi.org/10.1016/j.parint.2022.102648.Rapid diagnostic tests (RDTs) based on immunochromatographic detection of Plasmodium falciparum histidine-rich protein 2 (HRP2) have been frequently used for malaria diagnosis. The HRP2-based RDTs are highly sensitive and easy to use; however, their sensitivity may be low in detecting P. falciparum strains carrying deletion of the pfhrp2 and pfhrp3 genes encoding HRP2 and HRP3, respectively. The automated hematology analyzer XN-31, developed by Sysmex (Kobe, Japan) to aid in malaria diagnosis, has higher sensitivity than RDTs owing to a unique automated nucleic acid staining technology that has shown great potential in clinical settings. In this study, we compared the performance of the XN-31 analyzer and two RDTs to detect pfhrp2- and/or pfhrp3-deleted parasites cultured in vitro. The analyses showed that the analyzer was not only as sensitive to pfhrp2- and/or pfhrp3-deleted strains as it was to the wild-type strain but also had higher sensitivity than the RDTs. These results suggested that the XN-31 analyzer is useful for rapid and reliable detection of pfhrp2- and/or pfhrp3-deleted parasites in clinical settings

    Recent increase of genetic diversity in Plasmodium vivax population in the Republic of Korea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The reemergence of <it>Plasmodium vivax </it>in South Korea since 1993 represents a serious public health concern. Despite the importance in understanding genetic diversity for control strategies, however, studies remain inconclusive with the general premise that due to low rate of malaria transmission, there is generally low genetic diversity with very few strains involved. In this study, the genetic diversity and population structure of <it>P. vivax </it>in South Korea were explored by analysing microsatellite polymorphism.</p> <p>Methods</p> <p>Sequences for 13 microsatellite loci distributed across the twelve chromosomes of <it>P. vivax </it>were obtained from 58 South Korean isolates collected during two sampling periods, namely 1997-2000 and 2007. The sequences were used for the analysis of expected heterozygosity and multilocus genotype diversity. Population structure was evaluated using STRUCTURE version 2.3.2. Linkage disequilibrium was also analysed to investigate the extent of outbreeding in the <it>P. vivax </it>population.</p> <p>Results</p> <p>Mean expected heterozygosity significantly increased from 0.382 in 1997-2000 to 0.545 in 2007 (<it>P </it>< 0.05). The number of multilocus genotypes was 7 and 27; and genotype diversity was statistically significant (<it>P </it>< 0.01) at 0.661 and 0.995 in 1997-2000 and 2007, respectively. Analysis by STRUCTURE showed a more complex population structure in 2007 than in 1997-2000. Linkage disequilibrium between 13 microsatellites, although significant in both time points, was notably lower in 2007.</p> <p>Conclusions</p> <p>The present microsatellite analysis clearly showed recent increase of genetic diversity and recent relaxation of the strong population structure observed in 1997-2000. These results suggest that multiple genotypes not present previously recently migrated into South Korea, accompanied by substantial outbreeding between different genotypes.</p

    Plasmodium falciparum serine repeat protein, a new target of monocyte-dependent antibody-mediated parasite killing

    Full text link
    Copyright © American Society for Microbiology, Infection and Immunity, 70(12), 2002, 7182-7184, https://doi.org/10.1128/IAI.70.12.7182-7184.2002.Using monoclonal antibodies and human affinity-purified antibodies specific to the Plasmodium falciparum 126-kDa serine-rich protein, SERP, we found that these antibodies have no direct effect upon merozoite invasion at the concentrations tested but can cooperate with blood monocytes to strongly inhibit P. falciparum in vitro growth

    Immune tolerance caused by repeated P. falciparum infection against SE36 malaria vaccine candidate antigen and the resulting limited polymorphism

    Full text link
    Palacpac N.M.Q., Ishii K.J., Arisue N., et al. Immune tolerance caused by repeated P. falciparum infection against SE36 malaria vaccine candidate antigen and the resulting limited polymorphism. Parasitology International 99, 102845 (2024); https://doi.org/10.1016/j.parint.2023.102845.The call for second generation malaria vaccines needs not only the identification of novel candidate antigens or adjuvants but also a better understanding of immune responses and the underlying protective processes. Plasmodium parasites have evolved a range of strategies to manipulate the host immune system to guarantee survival and establish parasitism. These immune evasion strategies hamper efforts to develop effective malaria vaccines. In the case of a malaria vaccine targeting the N-terminal domain of P. falciparum serine repeat antigen 5 (SE36), now in clinical trials, we observed reduced responsiveness (lowered immunogenicity) which may be attributed to immune tolerance/immune suppression. Here, immunogenicity data and insights into the immune responses to SE36 antigen from epidemiological studies and clinical trials are summarized. Documenting these observations is important to help identify gaps for SE36 continued development and engender hope that highly effective blood-stage/multi-stage vaccines can be achieved

    Rapid and Highly Sensitive Detection of Malaria-Infected Erythrocytes Using a Cell Microarray Chip

    Get PDF
    BACKGROUND: Malaria is one of the major human infectious diseases in many endemic countries. For prevention of the spread of malaria, it is necessary to develop an early, sensitive, accurate and conventional diagnosis system. METHODS AND FINDINGS: A cell microarray chip was used to detect for malaria-infected erythrocytes. The chip, with 20,944 microchambers (105 µm width and 50 µm depth), was made from polystyrene, and the formation of monolayers of erythrocytes in the microchambers was observed. Cultured Plasmodium falciparum strain 3D7 was used to examine the potential of the cell microarray chip for malaria diagnosis. An erythrocyte suspension in a nuclear staining dye, SYTO 59, was dispersed on the chip surface, followed by 10 min standing to allow the erythrocytes to settle down into the microchambers. About 130 erythrocytes were accommodated in each microchamber, there being over 2,700,000 erythrocytes in total on a chip. A microarray scanner was employed to detect any fluorescence-positive erythrocytes within 5 min, and 0.0001% parasitemia could be detected. To examine the contamination by leukocytes of purified erythrocytes from human blood, 20 µl of whole blood was mixed with 10 ml of RPMI 1640, and the mixture was passed through a leukocyte isolation filter. The eluted portion was centrifuged at 1,000×g for 2 min, and the pellet was dispersed in 1.0 ml of medium. SYTO 59 was added to the erythrocyte suspension, followed by analysis on a cell microarray chip. Similar accommodation of cells in the microchambers was observed. The number of contaminating leukocytes was less than 1 on a cell microarray chip. CONCLUSION: The potential of the cell microarray chip for the detection of malaria-infected erythrocytes was shown, it offering 10-100 times higher sensitivity than that of conventional light microscopy and easy operation in 15 min with purified erythrocytes

    Detection Chip for Malaria

    Get PDF
    Background: Malaria is one of the major human infectious diseases in many endemic countries. For prevention of the spread of malaria, it is necessary to develop an early, sensitive, accurate and conventional diagnosis system. Methods and Findings: A cell microarray chip was used to detect for malaria-infected erythrocytes. The chip, with 20,944 microchambers (105 µm width and 50 µm depth), was made from polystyrene, and the formation of monolayers of erythrocytes in the microchambers was observed. Cultured Plasmodium falciparum strain 3D7 was used to examine the potential of the cell microarray chip for malaria diagnosis. An erythrocyte suspension in a nuclear staining dye, SYTO 59, was dispersed on the chip surface, followed by 10 min standing to allow the erythrocytes to settle down into the microchambers. About 130 erythrocytes were accommodated in each microchamber, there being over 2,700,000 erythrocytes in total on a chip. A microarray scanner was employed to detect any fluorescence-positive erythrocytes within 5 min, and 0.0001% parasitemia could be detected. To examine the contamination by leukocytes of purified erythrocytes from human blood, 20 µl of whole blood was mixed with 10 ml of RPMI 1640, and the mixture was passed through a leukocyte isolation filter. The eluted portion was centrifuged at 1,000×g for 2 min, and the pellet was dispersed in 1.0 ml of medium. SYTO 59 was added to the erythrocyte suspension, followed by analysis on a cell microarray chip. Similar accommodation of cells in the microchambers was observed. The number of contaminating leukocytes was less than 1 on a cell microarray chip. Conclusion: The potential of the cell microarray chip for the detection of malaria-infected erythrocytes was shown, it offering 10–100 times higher sensitivity than that of conventional light microscopy and easy operation in 15 min with purified erythrocytes
    corecore