2,684 research outputs found
The Impact of the Average Crop Revenue Election (ACRE) Program on the Effectiveness of Crop Insurance
This paper analyzes the effect of the ACRE program adopted in the final version of the 2007 Farm Bill on the risk-reducing effectiveness of insurance products. To the best of our knowledge this is a first attempt to analyze the effect of the ACRE program on the risk management decisions of crop producers. In particular, we compare the risk-reducing effectiveness of the two most common insurance contracts — APH and CRC — under the provisions of the 2002 Farm Bill and under ACRE program for representative cotton producer in Texas and corn producer in Illinois. These particular crop/region combinations are selected so as to represent situations of low and high price-yield correlations, respectively.Crop insurance, Farm Bill, ACRE, Agribusiness, Agricultural and Food Policy, Agricultural Finance, Crop Production/Industries, Risk and Uncertainty,
The usability of switchgrass, rice straw, and logging residue as feedstocks for power generation in East Texas
This thesis examines the economic implications of using agriculturally based
feedstock for bio-energy production in East Texas. Specifically I examined the use of
switchgrass, rice straw, and logging residue as a feedstock for electrical power
generation in East Texas replacing coal.
To examine the effects of such a substitution, an environmental bio-complexity
approach is used to analyze the interactions of agricultural, technological, economic, and
environmental factors. In particular, lifecycle analysis (LCA) and Cost-Benefit analysis
is used.
The results show that as we use more bio-energy for power generation, we will
get less Greenhouse Gas (GHG) emission, which will be an environmental benefit in the
long run. The main problem is that cost increases. Current biomass feedstock production
costs are generally too high for biomass feedstock to replace coal in power generation.
However I find that GHG offset prices can make biomass economically attractive. In
particular GHG offset prices and forgiveness for the emissions from combustion based on photosynthetic absorption would raise the price people would be willing to pay for
biomass feedstock making it competitive
Three Essays on Price Dynamics and Causations among Energy Markets and Macroeconomic Information
This dissertation examines three important issues in energy markets: price dynamics, information flow, and structural change. We discuss each issue in detail, building empirical time series models, analyzing the results, and interpreting the findings. First, we examine the contemporaneous interdependencies and information flows among crude oil, natural gas, and electricity prices in the United States (US) through the multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) model, Directed Acyclic Graph (DAG) for contemporaneous causal structures and Bernanke factorization for price dynamic processes. Test results show that the DAG from residuals of out-of-sample-forecast is consistent with the DAG from residuals of within-sample-fit. The result supports innovation accounting analysis based on DAGs using residuals of out-of-sample-forecast. Second, we look at the effects of the federal fund rate and/or WTI crude oil price shock on US macroeconomic and financial indicators by using a Factor Augmented Vector Autoregression (FAVAR) model and a graphical model without any deductive assumption. The results show that, in contemporaneous time, the federal fund rate shock is exogenous as the identifying assumption in the Vector Autoregression (VAR) framework of the monetary shock transmission mechanism, whereas the WTI crude oil price return is not exogenous. Third, we examine price dynamics and contemporaneous causality among the price returns of WTI crude oil, gasoline, corn, and the S&P 500. We look for structural break points and then build an econometric model to find the consistent sub-periods having stable parameters in a given VAR framework and to explain recent movements and interdependency among returns. We found strong evidence of two structural breaks and contemporaneous causal relationships among the residuals, but also significant differences between contemporaneous causal structures for each sub-period
Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes
Photoelectrochemical (PEC) water splitting to hydrogen is an attractive method for capturing and storing the solar energy in the form of chemical energy. Metal oxides are promising photoanode materials due to their low-cost synthetic routes and higher stability than other semiconductors. In this paper, we provide an overview of recent efforts to improve PEC efficiencies via applying a variety of fabrication strategies to metal oxide photoanodes including (i) size and morphology-control, (ii) metal oxide heterostructuring, (iii) dopant incorporation, (iv) attachments of quantum dots as sensitizer, (v) attachments of plasmonic metal nanoparticles, and (vi) co-catalyst coupling. Each strategy highlights the underlying principles and mechanisms for the performance enhancements.open2
- …