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ABSTRACT 

 

The Usability of Switchgrass, Rice Straw, and Logging Residue as Feedstocks for Power 

Generation in East Texas.  (May 2007) 

Sung Wook Hong, B.A., Korea University 

Chair of Advisory Committee: Dr. Bruce A. McCarl 

 
This thesis examines the economic implications of using agriculturally based 

feedstock for bio-energy production in East Texas. Specifically I examined the use of 

switchgrass, rice straw, and logging residue as a feedstock for electrical power 

generation in East Texas replacing coal. 

To examine the effects of such a substitution, an environmental bio-complexity 

approach is used to analyze the interactions of agricultural, technological, economic, and 

environmental factors. In particular, lifecycle analysis (LCA) and Cost-Benefit analysis 

is used. 

The results show that as we use more bio-energy for power generation, we will 

get less Greenhouse Gas (GHG) emission, which will be an environmental benefit in the 

long run. The main problem is that cost increases. Current biomass feedstock production 

costs are generally too high for biomass feedstock to replace coal in power generation. 

However I find that GHG offset prices can make biomass economically attractive. In 

particular GHG offset prices and forgiveness for the emissions from combustion based 
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on photosynthetic absorption would raise the price people would be willing to pay for 

biomass feedstock making it competitive.     
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CHAPTER I   

INTRODUCTION 

 

1.1       Climate Change and the Kyoto Protocol 1 

Climate change is one of the greatest environmental, social and economic threats 

facing the Earth. The Earth’s global average surface temperature has been increasing 

since 1861. Over the twentieth century the global surface temperature has increased by 

0.6 ± 0.2° C and it is projected to continue rising with a forecast increase ranging from 

1.5°C to 4.5°C by the end of this century (Intergovernmental Panel on Climate Change, 

2001). Such a temperature rise is likely to generate serious consequences for humanity 

and other life forms alike, including a rise in sea levels of an estimated 9 to 88 cm by the 

end of this century, which will endanger coastal areas and small islands, and a greater 

frequency and severity of extreme weather events (Intergovernmental Panel on Climate 

Change, 1996). Human activities that contribute to climate change include the burning of 

fossil fuels and deforestation, both of which cause emissions of carbon dioxide (CO2), 

the main greenhouse gas.  

The Kyoto Protocol to the United Nations Framework Convention on Climate 

Change strengthens the international response to climate change. Adopted by consensus 

at the third session of the Conference of the Parties in December 1997, it contains legally 

binding emissions targets for Annex I countries (developed countries) for the post-20th 
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century. By arresting and reversing the upward trend in greenhouse gas emissions that 

started in these countries 150 years ago, the Protocol promises to move the international 

community one step closer to achieving the Convention’s ultimate objective of 

preventing "dangerous anthropogenic [man-made] interference with the climate system". 

The developed countries committed themselves to reducing their collective emissions of 

greenhouse gases by at least 5%. This group target will be achieved through cuts of 7% 

by the US, 8% by the European Union, and 6% by Canada, Hungary, Japan, and Poland. 

Russia, New Zealand, and Ukraine are to stabilize their emissions. Each country’s 

emissions target must be achieved by the period of 2008-2012. In particular, an 

international emissions trading regime will be established allowing industrialized 

countries to buy and sell emissions credits among themselves. They will also be able to 

acquire emission reduction units by financing certain kinds of projects in other 

developed countries through a mechanism known as Joint Implementation. They will be 

able to pursue emissions cuts in a wide range of economic sectors. The Protocol 

encourages governments to cooperate with one another, improve energy efficiency, 

reform the energy and transportation sectors, promote renewable forms of energy, phase 

out inappropriate fiscal measures and market imperfections, limit methane emissions 

from waste management and energy systems, and protect forests and other carbon sinks.  

There are so many countries just beginning to address the overriding reality of 

the need to exploit more sustainable and politically secure energy resources. The supply 

of fossil fuels is shifting geographically as existing sources are depleted and new, more 

economic resources are opened up. This change is dependence on imported energy will 
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grow rapidly in the next decade. The politics of environmental protection, especially 

with regard to Climate Change is forcing governments to initiate programs to reduce 

carbon emissions, improve energy efficiency and exploit less carbon intensive energy 

sources. Bio-energy is at the center of these changes as the only renewable carbon fuel 

with the potential to address the full range of energy markets including heat, electricity 

and transport. The renewable energy strategies of the United States expect the bio-

energy sector to be pre-eminent in the global market for secure, indigenous and 

renewable energy supplies in the next century and to play a vital role in underpinning the 

overall transition to sustainable energy. 

 

1.2       Objectives 

The main objective of the study is to economically evaluate the possibility for 

generating electric power from agricultural and forest biomass in East Texas. 

Specifically, the study will assess the economic costs and benefits of electric power 

production using switchgrass, rice straw and logging residues.  

The economic estimation will consider the costs of energy production, feedstock 

production, and greenhouse gas emission mitigation. Also a life cycle assessment 

approach will be applied to this analysis.  

The study will analyze electricity generation of energy by utilizing biomass. In 

this study, two scenarios will be examined for electricity generation:  

a) Fired alone using biomass  
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b) Co-firing using coal and biomass (i.e., supplementing coal usage in coal-fired 

boilers with biomass sources).  

The study will propose a framework that can be used to assist regional planners 

in their decision-making process regarding whether or not to pursue a sustainable bio-

energy strategy and what types of feedstock to choose. 

 

1.3       Organization of the Thesis 

The remaining chapters are organized as follows. Chapter II presents a literature 

review on the issues related to biomass as a feedstock for generating electricity and 

reducing greenhouse gas emissions. Chapter III introduces the methodology that will be 

used to develop the analysis of the usability of switchgrass, rice straw and logging 

residue as alternative feedstock for generating electricity in East Texas region. Chapter 

IV presents the economic analyses on each of the three feedstocks. Chapter V draws 

conclusions and outlines future studies. 
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CHAPTER II   

LITERATURE REVIEW  

 

The pros and cons of using biomass feedstock for energy purposes have been 

discussed in many United States and international studies. Here we present a literature 

review on environmental and economic issues in relation with biomass feedstock for 

generating electricity.   

 

2.1       Biomass and Bio-energy Systems 

Biomass or bio-energy1 was the early principal source of energy usage with early 

man burning wood to cook food and to provide heat. At present, wood is still one of the 

largest biomass energy resources but reliance on it was greatly diminished during the 

20th century. Biomass is often argued to be the largest, most diverse and readily 

exploitable resource. Biomass comes from a wide range of sources: all water and land-

based vegetation and trees, and all waste biomass such as municipal solid waste (MSW), 

municipal bio-solids (sewage), animal waste (manures), forestry and agricultural 

residues, and certain types of industrial wastes (Klass et al, 2004). Even the fumes from 

landfills can be used as a biomass energy source.  

Biomass has a potential to improve the environmental and economic issues in 

relation with energy producing processes. From the environmental point of view, 

                                                 

1 Bio-energy is the energy generated using biomass matter as a feedstock. 
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biomass, especially energy crops, can benefit the environment through reduction in air 

and water pollution, soil quality improvement and soil erosion reduction reference. 

Biomass requires less fertilizers and pesticides than traditional agricultural crops. It also 

reduces the soil erosion as well as water pollution by cutting back the agricultural runoff 

to the nearby water bodies. For example, since some energy crops are replanted only 

every 10 years, less soil erosion plowing is needed. Hohenstein and Write (1994) 

estimated an approximate 95% reduction in erosion rates and a 90% reduction in the use 

of pesticides in the production of herbaceous energy crops relative to annual row crops. 

Finally, there is the important issue of the biomass impact on concentrations of 

atmospheric CO2. The population increase and anthropogenic activities such as energy 

consumption, land use changes due to urbanization, conversion of forests to agricultural 

and pasture lands contribute to atmospheric CO2 build-up (Hohenstein et al, 1994). 

According to the United Nations Intergovernmental Panel on Climate Change, “about 

three-quarters of the anthropogenic emissions of CO2 to the atmosphere during the past 

20 years are due to fossil fuel burning. The rest is predominantly due to land-use change, 

especially deforestation”. Numerous studies argue that biomass reduces air pollution 

through participation in the carbon cycle. It reduces energy generation carbon dioxide 

emissions by 90% compared to fossil fuels. It also substantially reduces amounts of 

sulfur dioxide and other pollutants in the air. Kline, Hargrove and Vanderlan (1998) 

argued that switching to biomass-fueled power plants would reduce net emissions by 

95%. From an economic point of view, biomass energy will become more widely used 

only if they are economically competitive with traditional energy sources. The estimated 
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market price of biomass-derived energy versus the market price of fossil fuel-derived 

energy, is a key constraint to the commercial use of biomass feedstock to produce energy 

in the U.S. (Walsh M.E., 1998). Biomass energy cost depends on numerous factors, such 

as the feedstock type, availability and yields, transportation costs and etc. In addition, the 

process of converting the bio-fuels into energy needs to be reliable and efficient. The 

cost-effectiveness of bio-fuels as an energy resource depends largely on site-specific 

circumstances. Since bio-fuels have low energy content per ton compared to fossil fuels, 

they must be used close to their source of production to minimize transportation and 

handling costs (Klass, 2004). Additionally, reduction in the cost of the conversion 

processes through introduction of more advanced technologies could be a big factor in 

reducing the cost of bio-fuel energy.  

 

2.2       Biomass Source 

There are many types of plants in the world, and many ways they can be used for 

energy production. In general, there are four types of biomass: plants that are grown 

specifically for energy use which are commonly called energy crops (e.g., switchgrass, 

willow, hybrid-poplar) and residues from plants that are used for other purposes (e.g. 

residuals from corn, wheat etc.), conventional products that can be diverted to energy 

generation like trees, corn, wheat, sugarcane and agricultural wastes such as manure, 

milling byproducts, and bagasse. According to the Oak Ridge National Laboratory 

estimations, the total world biomass resources are huge comprising of 99% of crop 

biomass and 80% of forest biomass (ORNL, 2004).  
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The choice of plant species as biomass feedstocks depends largely upon the end-

use and the bio-conversion option of interest, e.g. combustion, gasification, pyrolysis, 

fermentation or mechanical extraction of oils (McKendry, 2002). The plants that have 

been selected by the U.S. Department of Energy for further development as energy crops 

are mostly perennials such as switchgrass, willow and poplar. They were selected for 

their advantageous environmental qualities such as erosion control, soil organic matter 

build-up and reduced fertilizer and pesticide requirements (ORNL, 2004).  

In this study, we examine selected biomass feedstock which is perennial grasses 

switchgrass, rice straw and logging residues. These feedstocks are selected because they 

have high potential to the biomass feedstock of East Texas region. These feedstocks are 

discussed in the following sections.   

 

2.3       Switchgrass as Bio-energy 

Switchgrass is a native plant to North America where it grows naturally from 

Canada to deep into Mexico, mostly as a prairie grass. Because it is native, switchgrass 

is resistant to many pests and plant diseases.  It is also capable of producing high yields 

with very low applications of fertilizer. According to Bransby (2004), switchgrass is 

“very tolerant of poor soils, flooding and drought, which are widespread agricultural 

problems in the southeast of Texas”. It grows fast, capturing lots of solar energy and 

turning it into chemical energy such as cellulose that can be liquified, gasified, or burned 

directly. Switchgrass reaches deep into the soil for water, and uses the water very 

efficiently. It is an adaptable perennial grass which, once established in a field, can be 
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harvested as a cash crop, either annually or semiannually, for 10 years or more before 

replanting is needed. In addition, switchgrass normally requires herbicide use only 

during the establishment year, whereas corn and other annual crops require annual 

applications (McLaughlin et al., 1998). With its network of stems and roots it holds onto 

soils so it slows down runoff and anchors soils. Switchgrass can also filter runoffs from 

the fields planted with traditional row crops. For example, buffer strips, planted along 

stream banks and around wetlands, could remove soil particles, pesticides, and fertilizer 

residues from surface water before they reach groundwater or streams.   

Switchgrass removes carbon dioxide (CO2) from the air as it grows, therefore it 

has the potential to reduce the build-up of this greenhouse gas in the atmosphere and 

lower the risk of global warming. Unlike fossil fuels, which simply release more and 

more CO2 that has been stocked in geologic storage for millions of years, energy crop 

switchgrass recycles CO2 over and over again, with each year's cycle of growth and use.  

Switchgrass has been researched extensively as a forage crop particularly in 

Midwestern and Northeastern U.S (Vogel, and Masters, 1998). However, until recently 

little research has been done on switchgrass as a biomass or forage crop in Texas. 

According to Faidley (1995), there are nineteen million hectares that are potentially 

suited for switchgrass production in Texas. The Texas Agricultural Experimental Station 

was chosen by the U.S. Department of Energy Biomass Feedstock Development 

Program in 1992 as one of three regional cultivars and management testing centers to 

focus on switchgrass as a bioenergy feedstock (Sanderson et al, 1999). The five-year 

trial comparing commercially available switchgrass cultivars in five locations in four 
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physiographic regions of Texas (e.g. Stephenville, Beeville, Dallas, Temple, and College 

Station) reported that Alamo switchgrass is the best-adapted commercially available 

switchgrass cultivar for biomass feedstock production in Texas. Therefore, the Alamo 

cultivar is used for switchgrass potential analysis in East Texas in this paper. 

 

2.4       Rice Straw as Bio-energy 

Rice straw is a source of biomass used today for energy. It is mainly disposed by 

field burning, and only 40 percent of rice straw is used for steam and/or power 

production. Rice straw gets accumulated during rice harvesting process. Average stem 

weight ranges from 1.3g to 2.6g and higher stem weight corresponds to higher yield but 

lower stand density (Summers et al, 2002). Forty percent of biomass is in the internode 

sections of the stem, 53% is in the leaf and sheath, 4% in the nodes and 3% in the 

panicle (excluding hull and seed). Since many properties vary by botanical fraction, 

height of cut influences both the yield and composition of the straw. The ability to 

predict the amount and composition of the biomass material allows for greater control in 

the design and mobilization of the harvesting system.  

Rice is heavily produced in areas of East Texas with 51,800 acres, and rice straw 

yielding is approximately 8,399.185 tons/year thus could be an important biomass source. 
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2.5       Logging Residue as Bio-energy 

Residues from the wood products and forestry industries are the largest source of 

biomass used today for energy. They supply about 64% of the total used in the United 

States (Climate Change Technologies, 2000).  

Logging residues get accumulated during wood harvesting process and are 

defined as woody biomass separated from the desired wood assortments during 

harvesting and usually left in the forest, including branches, tops, stumps, and even the 

under-sized trees left standing or felled (Weihuan et al, 2005). 

 Various industrial and consumer products can be made from logging residues. 

They can be combusted, fermented, or used in bioreactors (to make carbon and 

hydrogen) for the production of energy or to produce fuels or industrial chemicals 

(Burden et al 2003). The vast majority of Texas forests are located in East Texas. This 

part of the state is the home and heart of Texas forest industry. Forest land dominates the 

landscape of East Texas, where forests are 56% of the land. Wastes generated by the 

forest products industry of East Texas include logging residues left behind after harvest 

as well as bark, wood chips, and sawdust generated at mills (Dreesen et al, 2000)). 

 

2.6       Electric Power Generation 

The United States currently obtains more than 55% of its electricity from coal, 

and coal-fired power plants consume 87% of all U.S. coal produced (U.S. DOE). 

Traditional coal-fired power plants emit toxic chemicals and greenhouse gases into the 

atmosphere, and create toxic and nuclear waste. Coal-fired power plants are responsible 
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for 93.4% and 80.2% of power production related SO2 and NOx emissions, respectively 

(Mann M.K. and P. Spath, 2001). Additionally, coal is responsible for 35.8% of all CO2 

emission and 73.5% of all CO2 emission from power plants (U.S. DOE 1998).  In Texas, 

electricity is generated by using coal and lignite, as well as natural and nuclear power. 

For example, according to state summary of Texas Environmental Profiles in Electricity 

in Texas, in 2000, 46% of electricity came from natural-gas-fired plants, 41% came from 

coal-powered plants and 13% came from nuclear-powered plants. Since 1995, 56 new 

power plants have been built in the state with another 14 approved power plants being on 

hold, all of which were to use fossil fuels as source of energy. The Texas power plants 

release a total of 263 million tons of greenhouse gas into the air each year (Texas 

Environmental Profiles, 2005). In contrast, a biomass-fired power plant emits CO2 into 

the atmosphere, which is then removed from atmosphere by biomass plant growth 

through photosynthesis (McCarl et al, 2000).  

 

2.7       Electric Power Generation from Biomass 

Electricity may be produced from a variety of biomass resources, including 

woody and herbaceous energy crops grown in dedicated plantations, wood-, municipal-, 

and agricultural wastes, and other bio-processed gases and liquids. Forest products and 

other biomass are currently being used for conversion to electric power through 

conventional combustion technology. The biomass power industrial plants in the U.S. 

are composed of about 350 plants with combined capacity of about 7,800 megawatts, 

according to a DOE database. In addition, according to Department of Energy in Oregon 
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State, another 650 industrial plants generate electricity with biomass for their own use. It 

is estimated that 50,000 megawatts of bio-power could be generated by 2010 using 

advanced technologies and improved feedstock supplies.  

The primary technologies for the conversion of biomass to electricity production 

are direct combustion, co-firing, gasification, and pyrolysis. Several organizations such 

as the Electric Power Research Institute, the Gas Research Institute, the National 

Renewable Energy Laboratory, Battelle Columbus and private industry have conducted 

research to characterize these biomass conversion technologies. 

 Most of today’s biomass power plants are of direct combustion type. Direct 

combustion involves the oxidation of coal or biomass with air, giving off hot flue gases 

that are used to produce steam. Steam is used to produce electricity in a Rankine cycle. 

Older direct combustion systems were based on pile burner technology using stationary 

grates. The majority of utility power boilers now in service are fired by pulverized coal, 

cyclone, or stokergrate systems. Increasingly, new steam-cycle power plants are using 

fluidized bed and improved pulverized systems. 

Co-firing involves substituting biomass for a portion of coal in an existing power 

plant furnace. It is the most economic near term option for introducing new biomass 

power generation (Biomass Program: Electric Power Generation in US DOE). Because 

much of the existing power plant equipment can be used without major modifications, 

co-firing is far less expensive than building a new biomass power plant. Compared to the 

coal it replaces, biomass reduces sulfur dioxide (SO2), nitrogen oxides (NOx), and other 

emissions. Coal-fired power plants generally have higher efficiencies, lower capital 
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requirements, and lower electricity generating costs than combusting the same fuels in 

dedicated biomass and waste fuel power plants. The local availability and cost of 

biomass and waste resources are principal factors in determining the feasibility of co-

firing at a specific site. Optimal sites for co-firing are those areas where there is enough 

available biomass or waste to easily support the level of co-firing and where the cost of 

the resource is less than that of coal. Studies by the Electric Power Research Institute 

have indicated that co-firing with biomass at levels up to 15 percent can be economical 

when the difference in costs between coal and wood is in the range of $0.25 to $0.40 per 

million BTU. However, when coal costs ranges from $1.00 to $1.50 per million BTU, it 

is difficult for biomass to compete.   

Texas has an immense amount of biomass resources and produces and uses more 

electricity than any other state in the U.S. (Texas Environmental Profiles, 2005). 

However, no biomass-fired electricity generating plant exists in the state. Two scenarios 

of producing electric power from biomass that are considered in this study are:  

a) Fired alone switchgrass, rice straw or logging residues in an existing power 

plant  

b) Co-firing switchgrass, rice straw or logging residues with coal in an existing 

power plant.  
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2.8       Case Study – East Texas 

The East Texas region is selected to evaluate the complexity of concerns related 

to fossil fuels usage and examine the role of biofuels in addressing these concerns. The 

East Texas area resides in one of the nation’s leading agricultural states, Texas. The area 

has vast agricultural and forest acreage.  

 

Fig. 1   Study Area 
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Figure 1 shows the study area. It includes the counties of Orange, Harris, Liberty, 

Hardin, Chambers, Galveston, and Jefferson that are part of the area known historically 

as the rice producing area. Rice farmers in these counties are facing various production 

process challenges. The 1996 Farm Bill and resultant market environment have put an 

increasing economic pressure on rice farmers. Namely, as a consequence of reducing 

governmental payment rates for rice, increasing competition for water, lacking of 

economically viable rotation crops and rising costs to comply with governmental 

programs and environmental regulations, there has been a tremendous drop in rice 

production in Texas (Balas et al., 1993). For example, the rice acreage in seven counties 

that fall into the study area has dropped from 92,779 acres in 1995 to 44,450 acres in 

2002 (Texas Agricultural Statistics Service, 2002). Furthermore, the average market 

price for Texas rice has dropped sharply since its peak in 1996 from $10 per 

hundredweight to $6 per hundredweight in 2000 (LCRA, 2003). As a result of these 

challenges farmers have indicated an interest in alternative crop production (Barta, 1998). 

Forest producers are facing similar challenges and are also looking for alternative 

production possibilities as pulp prices currently fall. One of the options for farmers and 

forest producers to face their challenges would be to participate in the nation’s biomass-

to-energy effort by selling their biomass feedstock to energy producing facilities.  

Another reason, why the East Texas region is selected, could be the projected 

economic development and population growth in East Texas which has and will 

substantially increase the future electricity and transportation fuel demand in the region. 

According to the population projections estimated by the Texas Water Development 
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Board, the population of Texas is expected to reach 24.5 million people by year 2010 

and 28.8 million by year 2020. The population projections for the study region of 44 

counties indicate that the area population will increase from 5.78 million in 2000 to 6.67 

millions in year 2010 and 7.73 millions in year 2020 (TWDB, 2003).  Meeting the 

growing demand by using fossil fuels would contribute to the already serious air 

pollution and water contamination problems and cause various environmental and health 

problems in the region. Moreover, air pollution of East Texas region exceeds national 

pollution standards (SECO Fact Sheet, No. 25) and is required to use oxygenates in 

gasoline.   

Along with the above mentioned challenges and concerns, East Texas offers 

great opportunities for bioenergy strategies. From its vast 12-million-acre forest industry 

to its huge grain and fiber farms, the region is richly endowed with biomass (Texas 

Energy Planning Council, 2004). In addition, the production potential for energy crops 

for Texas is estimated to be 9,140,000 dry tons per year (State Bioenergy, 2004). 

According to Texas Energy Overview, an estimated 30.2 billion kwh of electricity could 

be generated using renewable biomass fuels in Texas. This would be enough electricity 

to fully supply the annual needs of 3,018,000 average homes, or 30 percent of the 

residential electricity use in Texas (State Bioenergy, 2004).   

Furthermore, the state has a varied physiography which brings a wide variety of 

weather to the region. Because of its expansive and topographically diverse nature, 

Texas offers continental, marine and mountain-type climates (The handbook of Texas 

on-line, 2005).  Precipitation is not evenly distributed over the state. However, East 
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Texas is considered as one of the wettest regions with average annual rainfall of 44.2 

inches (The handbook of Texas on-line, 2005). This high rainfall gives rise to a very 

important lumbering industry, and a good supply of grasses for livestock grazing and 

agricultural yields. Energy crops like switchgrass, which will be investigated in this 

study, require substantial rainfall and/or irrigation and the region are believed to create 

favorable conditions for their production.  
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CHAPTER III    

METHODOLOGY 

 

In this study several methodologies and modeling techniques will be employed to 

estimate the economic and environmental impacts of bio-energy production in the study 

area. The main categories used are Life Cycle Assessment (LCA) and simple budgeting.  

 

3.1       Life Cycle Assessment (LCA) 

LCA has emerged as a valuable decision-support tool for both policy makers and 

industry in assessing the cradle-to-grave impacts of a product or process (GDRC, 2004).  

LCA takes into account the environmental burdens associated with a product or service 

by identifying and quantifying energy and materials used and wastes released to the 

environment. More specifically, the assessment includes the entire life cycle of the 

product or service: encompassing, extracting and processing raw materials; 

manufacturing, transportation and distribution; use, re-use, maintenance; recycling, and 

final disposal. In addition, it assists in identifying and evaluating opportunities to affect 

environmental improvements. One of the key advantages of using LCA is that it allows a 

direct comparison between two products or services with regards to the environmental 

and energy impact (LCA).  

LCA has been employed to research similar problems in the U.S. and worldwide. 

For example, Mann and Spath conducted an LCA on coal-fired power systems that co-

fires wood residue and captured all processes necessary for the operation of the power 
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plant, including raw material extraction, feed preparation, transportation, and waste 

disposal and recycling. Qin et al. used LCA unified with an economic analysis to 

examine the competitiveness of switchgrass as a biomass resource in comparison with 

the energy sources that biomass would replace, including coal. Analysts from the U.S. 

National Bioenergy Center at NREL also employed LCA to determine the environmental 

impacts of biomass conversion technologies, using a cradle-to-grave approach that 

includes biomass feedstock growth, harvest, conversion, and product use. 

In this study, LCA analysis will be couples with an economic analysis and will 

be utilized to examine the economic, environmental and energy implications of replacing 

coal with switchgrass, rice straw and woody residues in the electricity generation process. 

Specifically, LCA will be used to quantify the energy and other resource consumption 

and greenhouse gas emissions from the feedstock production processes up to the point of 

burning those feedstocks to generate electricity.   

 

3.2       Cost-Benefit Analysis 

Cost-benefit analysis is a technique to ‘assess the relative desirability of 

competing alternatives in terms of the economic worth to society’ (Sinden and 

Thampapillai, 1995). It is widely used in government throughout the world to assist with 

choices involving public and private projects or government programs because it has the 

most developed theoretical foundation of the available techniques. 
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3.2.1 Theoretical Basis of Cost-Benefit Analysis 

This foundation begins with an ethical view (Sinden and Thampapillai, 1995) 

that: 

■ Activities to be undertaken or goods to be produced should be assessed in 

terms of their usefulness to humans. 

■ Usefulness should be judged in terms of usefulness to individuals, as judged by 

those individuals who will best know their own welfare. 

■ The welfare of all individuals in society must be included. 

 

The technique is therefore human centered and individualistic. That is, the 

analyst or the agency should have no role in determining what is useful, only in 

observing what all individual humans in society find useful. Alternative ethical 

frameworks might see a normative view imposed as to what is good for society or for the 

ecology. Cost-benefit analysis is agnostic on these issues, and is only concerned with 

measuring how people do value things, not how they should value them. 
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CHAPTER IV   

ANALYSIS OF BIOMASS FEEDSTOCK  

 

4.1       Yields and Production Cost of Biomass Feedstock 

 Many factors affect yield, including plant characteristics, soil characteristics, 

climate factors (rainfall, temperature  frost free days temperature extremes among other 

factors), solar radiation, fertilizer, herbicide and pesticide use, and management practices 

(such as planting and harvesting schedules, tillage practices, and harvesting methods). In 

addition, for woody crops the number of trees planted per acre, the number of years 

between harvests and the use of coppicing (re-growth from the stump instead of 

replanting), are the important factors (King et al., 1999). In this section issues such as 

feedstock availability, yield and feedstock budgets will be discussed for each of 

feedstock considered as a potential biomass source in East Texas region. 

 

4.1.1    Switchgrass 

Switchgrass is as a perennial grass with high potential for energy production.  

Switchgrass yield performance has been researched by many scientists.  

McLaughlin and Kszos (2005) report that current average annual yields from 

switchgrass in small plots over multiple years at 23 US locations from 4.2 to 10.2 dry 

tons per acre, with most locations having an average between 5.5 and 8 dry tons per acre.  

Switchgrass production trials established in various locations in Texas during 

1992 to 1996 have revealed that the Alamo cultivar was the best adapted switchgrass 
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producing yields of 3.6 to 8 dry tons per acre (Sanderson et al, 1999). Based on the 

Walsh et al., average yield results for the South Plains region, which includes Texas, 

exhibits yield of 5.8 dry tons per acre with a stand life of 10 years. In addition it grows 

well in East Texas and since that is a high rainfall region has no need for additional 

irrigation. 

Switchgrass production costs in this study are adapted from Qin et al (2006). For 

the scenario of converting rice land to switchgrass, we use the Qin et al (2006) 

production process assumptions but modified their yields to 5.8 tons per acre per year. 

So we assume that switchgrass is established on crop land, harvested loose for hauling 

and chopping, and transported by compression into modules. In general, establishment 

of switchgrass requires a two-year period. It is assumed that approximately 25% of the 

fields are not successfully established during the first year and reseeding is carried out 

for these fields (Ney et al., 2002). Establishment includes seeding of the fields, 

application of herbicides and lime, and soil preparation, and it is assumed that the field 

equipment such as herbicide applicator and no till-drill are used. Further maintenance of 

switchgrass fields is assumed to be a relatively low cost process which mainly includes 

fertilizer application and mechanical weed control. These operations require a fertilizer 

spreader and a sickle mower. A Mower-conditioner and silage chopper with a wagon is 

assumed to be are utilized for harvesting alone with loose hauling and chopping. The 

switchgrass budget cost for the yield of 5.8 tons per acre reflecting the establishment, 

maintenance, and harvesting amounts to $ 174.92 per acre, or $ 30.16 per ton. 
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4.1.2    Rice Straw 

Straw makes up about 50% of the dry weight of a rice plant, with a significant 

variation from 40% to 60% according to the cultivar and cultivation method. For every 

tone of grain harvested, about 1.35 tones of rice straw remain in the field (Summers et al, 

2002). Rice straw has a high potential as a source of lignocellulosic biomass because of 

the high yield of rice straw per hectare. The proportion of recoverable straw depends on 

the technique of reaping and harvesting (manual or mechanical) and on the condition of 

the field (wet or dry) and crop (lodged or not). About 5.6 - 6.7 t ha (2.5 - 3 tons per acre) 

of dry straw is an average net production (Kadam et al, 2000). The rice acreage in East 

Texas is estimated about 210,000 acres in 2001 (Texas Water Resource Institute, 2001). 

The yield of rice straw is calculated from the following formula,  

      Residue after harvest = Yield * Straw-to-Grain Ratio* Weight Conversion Factor.  

Straw-to-Grain Ratios is 1.27 and the weight conversion factor is assumed to be 0.05 

taken from Summers et al (2003).  

According to USDA National Agricultural Statistics Services the East Texas 

region average rice harvested acres for what year are 51,800 acres and yields are 

2,916,020 hundredweights. 

Table 1 represents Average Annual Production Rice Straw in East Texas 

Counties in 2002. Annual average rice straw production in East Texas is 185,167.27 

hundredweights/year or 8,399.185 ton/year. 
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Table 1.   Average Annual Production Rice Straw in East Texas Counties in 2002 

County 
Harvested 

(acres) 
Yield 

(pounds/acre) 
Production 

(hundredweights) 
Rice straw 

(hundredweights) 

Bowie 1,700 6,760 115,000 7,302.5 

Chambers 16,000 5,530 885,000 56,197.5 

Galveston 1,000 8,300 83,000 5,270.5 

Harrison 1,600 6,250 100,000 6,350 

Jefferson 19,900 5,230 1,041,000 66,103.5 

Liberty 10,500 6,400 672,000 42,672 

Orange 1,100 1,820 20,020 1,271.27 

 

The method commonly used to harvest and handle rice straw is baling, and even 

this has been done only on a limited basis because of the lack of demand for the rice 

straw. 

If rice straw were to be harvested on a large scale a total harvest system as 

discussed by Horsfield et al (1977) and Dobie et al (1973) is likely to arise. Such a 

system removes both straw and grain in a single operation and hauls it to a designated 

location at the edge of the field, the farmstead, or the grain elevator for separation. The 

major pieces of equipment needed consist of a collector device, a stationary or modified 

combine, straw drying equipment, and a large baler. The grain collected can be separated 

from the straw outside the field with the unthreshed rice unloaded to form long, high 

piles. A combine with a modified feeding device would process these piles, threshing the 
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rice and dropping the straw in an adjacent pile. An air duct beneath the straw pile would 

then let natural or heated air to be blown through the pile to dry the straw.  

In this study, harvest assumptions of rice straw are the following: swathing into 

windrows, baling in large square bales, and moving to road side for transport. Harvesting 

costs are $13.54 per ton based on Fife and Miller (1999) and Summers (2003).  

 

4.1.3    Logging Residue 

The volumes of logging residues in the study area are available from the Texas 

Forest Service (Xu and Carraway, 2005). Residue data estimates are based on a mill 

survey conducted by the Texas Forest Service and a wood utilization study published by 

(Bentley and Johnson, 2004). The Texas Forest Service includes stumps, tops, limbs, and 

unutilized cull trees in defining the logging residues types. Cass, Harrison, Nacogdoches, 

Panola, Cherokee, Tyler, Polk, Jasper, Angelina and Newton have been identified as top 

potential producers of logging residue. In 2003, a total of 3.38 million tons of logging 

residues were produced in East Texas, 68.8 percent from softwood and 31.2 percent 

from hardwood. Total amount of logging residues in East Texas in 2003 were 3.38 

million tons. 

Table 2 shows the average annual recoverable logging residues in east Texas 

counties.  

 

 

 



 

 

27 

Table 2.   Average Annual Recoverable Logging Residues in East Texas Counties 

County 
Recoverable Logging 

Residue (tons) 
County 

Recoverable Logging 
Residue (tons) 

Anderson 53,993 Nacogdoches 139,210 

Angelina 168,107 Newton 154,996 

Bowie 89,018 Orange 24,202 

Camp 18,056 Panola 125,525 

Cass 191,250 Polk 228,443 

Chambers 6,672 Red River 57,526 

Cherokee 123,558 Rusk 113,314 

Franklin 3,954 Sabine 81,825 

Gregg 27,510 San Augustine 120,066 

Hardin 129,780 San Jacinto 58,308 

Harris 34,190 Shelby 101,969 

Harrison 140,493 Smith 61,013 

Henderson 16,967 Titus 16,775 

Houston 94,972 Trinity 118,393 

Jasper 227,954 Tyler 252,882 

Jefferson 26,607 Upshur 36,604 

Liberty 78,016 Van Zandt 7,324 

Marion 88,836 Walker 59,486 

Montgomery 64,506 Wood 19,647 

Morris 21,953 Total 3,383,900 
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To calculate the approximate yield of logging residue per acre we divide the 

volumes of residue from the above acreage by the private forest land acreage from the 

2003 Forest Inventory Analysis (FIA). Logging residue harvest cost of $8.71 per ton is 

taken from the Forest Residues Transportation Costing Model (FRTCM) (Rummer, 

2001). This cost estimate accounts for all fixed, variable and labor costs involved in the 

logging residue harvest process and does not consider costs involved during forest 

establishment, maintenance and tree harvest stages.  

 

4.2       Power Plant Requirement and Cost for Biomass Feedstock  

McCarl et al. (2000) assumed that the annual energy requirement for a 100 MW 

power plant is 7 trillion Btu (TBtu). In this study, we use that assumption. The following 

Higher Heating Values (HHV) and moisture levels were used to calculate the thousands 

of tons of wet biomass required to provide 7 TBtus annually. Following Table 3 shows 

Higher Heating Values (HHV) and moisture levels of each feedstock. 

 

Table 3.   Higher Heating Values (HHV) and Moisture Levels of Each Feedstock 

Biomass HHV HHV units 
Moisture 
Percent 

Switchgrass 15991 kJ/kg wet 11.99% 

Rice straw 15200 kJ/kg dry 15% 

Logging Residues 4500 Btu/lb wet 50.00% 
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Using the conversion factors of 0.9478171 Btu/kJ, 907.18474 kg/ton, and 

1.1023113 ton/tonne, the amounts of feedstock that the 100 MW plant would require for 

its annual operations are shown in Table 4. 

 

Table 4.   Annually Required Quantity of Feedstock at the 100MW Power Plant 

Feedstock Btu/ton Tons 

Switchgrass 13,749,785 509,099 

Rice Straw 13,069,147 630,108 

Logging Residues 9,000,000 777,778 

  

Subsequently, the amounts of feedstock required for fired alone, 5%-, 10%-, and 

15% co-firing (mass basis) scenarios are shown in Table 5. 

 

Table 5.   Annually Required Quantity of Feedstock as Scenario at the 100MW Plant 

Feedstock 
(wet tons) 

Fired Alone 5% co-firing 10% co-firing 15% co-firing 

Switchgrass 509,099 25,454.95 50,909.9 76,364.85 

Rice Straw 630,108 31,505.4 63,010.8 94,516.2 

Logging Residues 777,778 38,888.9 77,777.8 116,666.7 

 

4.3       Hauling Distance and Costs 

4.3.1    Hauling Distance 

Hauling distance is one of the major barriers that prevent biomass from becoming an 

energy source on a commercial scale. The average hauling distances that are used in this 
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study were calculated following McCarl et al (2000) who relied on a formula derived by 

French (1960). Namely, given a rectangular road system, a per square mile density of 

biomass production (BD), a plant requirement of M tons of biomass, and a biomass yield 

per acre in BTUs Y, the average hauling distance (D) formula is:  

Distance = ( )
5.0

**640
*4714.0 









Acreerp dielY sBiomasensityD sBiomas

Mass
 

where ‘Distance’ is the average hauling distance and ‘Mass’ is the amount of biomass 

required for the energy production. Obviously, the average distance changes as the 

amount of feedstock required to produce energy changes.  

Switchgrass average hauling distance was calculated using a required mass of 

509,099 tons, yield of 5.8 tons/acre (Kiniry et al, 2005) and the 10% density.  The 

assumption of 10% density is justified because currently there are no switchgrass fields 

grown as conventional crops but what is the rice density in the counties where it would 

be replaced.  

For rice straw, average hauling distance was calculated using the required mass 

of 630,108 tons, yield of 3 tons/acre (Kadam et al, 2000). And biomass density was 

3.8% based on a procedure used in the FASOM model.  First, the 2001 acreage for rice 

and the total acres by county were downloaded from on-line USDA data. The top 5 rice 

producing counties were then selected. The selected county combined acreage totals 

were then added and then the result was divided by the sum of the selected counties total 

acreage to yield a weighted average rice straw density for the agricultural region.  
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 For logging residue, densities by FASOM region were determined by calculating 

a weighted average stand rotation from the FASOM rotation data.  One was divided by 

the average stand rotation and the result was multiplied by 0.8 yielding the logging 

residue density. The 0.8 is the practical forest density for forest lands as determined from 

the map, Forest Density in the Conterminous U.S., US Environmental Protection Agency. 

Yields are 1000 cuft per acre which were converted to tons per acre using the factors of 

27.5 lbs per cuft for softwood and 33.0 lbs per cuft for hardwood (Carpenter, 1980).  

 

Table 6.  Average Hauling Distances for Switchgrass, Rice Straw and Logging Residues 

Feedstock Combustion Type 
Average Hauling 
Distance (miles) 

Fired alone 17.46 

5% co-firing 3.90 

10% co-firing 5.52 
Switchgrass 

15% co-firing 6.76 

Fired alone 43.808 

5% co-firing 9.796 

10% co-firing 13.853 
Rice Straw 

15% co-firing 16.967 

Fired alone 5.05 

5% co-firing 1.129 

10% co-firing 1.597 
Logging residue 

15% co-firing 1.956 

Notice that the distance does not change linearly with the increase in the co-firing ratio.  
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In turn the average hauling distance for hauling the residues to power plant for 

residue fired alone and co-fired at 5%, 10%, and 15%. Table 6 presents the average 

hauling distances for all the scenarios. 

 

4.3.2    Hauling Cost 

Transportation from field edge to plant gate represents a significant cost and 

source of added embodied energy. The larger the plant and the more diffuse the resource, 

the greater the impact on cost and embodied energy of transportation. The cost of 

hauling biomass from a field to a power plant is largely a function of the hauling 

distance. In addition, increasing the co-firing ratio will also increase the hauling cost as 

it will require collecting biomass from a larger radius from the plant location given the 

same bio-density. Noon et al estimated the average switchgrass transportation cost in 

Alabama to be $8.00/dry tonne for 25 miles hauling distance (Noon et al, 1996). Graham 

and others at Oak Ridge National Laboratory evaluated the cost of delivering wood chips 

to different size plants in Tennessee. Their transportation cost estimates ranged from $7 

to $16 per dry ton, accounting for 18% to 29% of plant-gate cost (Graham et al, 1997 

and Downing and Graham, 1996). James et al (2001) computed the transportation costs 

by adding a fixed cost of $5.50 to a variable cost of $0.088 per mile. With these costs a 

50 mile haul cost would be about $10/ton, which was typical of what is found in the 

Pacific Northwest. The three different feedstocks examined in this study have different 

hauling distance and transportation considerations. Hence, the hauling costs are 

estimated differently for each case.  
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To calculate the hauling costs per ton of feedstock we utilized the formula 

derived by McCarl et al (2000):  

SizeLoad

MileperCostceDisAverageCostLoadFixed
CostHauling

)tan2( ××+=  

Average Distance is from the hauling distances from above in Table 6. Using 

these distances in the above formula we calculated the logging residue hauling costs for 

East Texas region. The truck load size was assumed to be 14, 20 and 25 tons for 

switchgrass, rice straw and logging residue, respectively. 

Switchgrass hauling parameters are taken from Qin et al (2006). Based on these 

parameters, cost per mile was calculated including the fixed, variable and labor costs of 

the hauling process. Switchgrass is assumed to be cut, chopped, and compressed into a 

module at the farm for hauling in a module truck. The fixed load cost included all 

harvest costs through module building. Switchgrass hauling cost per mile, which 

accounts for all fixed costs, was then calculated at $1.62 per mile.  

For rice straw, according to Sokhansanj (2006), hauling cost parameters 

assumptions are the following: fixed load costs are $90, cost per mile is $2.20, and load 

size is 20 ton. Harvesting cost is $13.54 per ton based on Summers study.  

The hauling cost parameters (fixed load cost, cost per mile, and load size) for 

logging residue were taken from the Forest Residues Transportation Costing Model 

(Rummer, 2001). We assumed that residue was loaded by a knuckle-boom loader into a 

container truck and hauled 2.5 miles to a disk chipper for chipping. Then, the disk 

chipper was directly loading chipped residue to a 120 cubic yard van-type truck which 
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was then transported to bio-energy producing facility. This model was amended to 

produce cost per mile from its standard model results. Fixed load cost included all 

harvest costs through the chipping process. Table 7 presents the hauling costs for 

switchgrass, rice straw and logging residue. 

 

Table 7.   The Hauling Costs for Biomass Feedstock  

Feedstock Combustion Type Hauling Cost ($/ton) 

Fired alone 7.00 

5% co-firing 3.86 

10% co-firing 4.23 
Switchgrass 

15% co-firing 4.52 

Fired alone 14.138 

5% co-firing 6.655 

10% co-firing 7.548 
Rice Straw 

15% co-firing 8.233 

Fired alone 9.955 

5% co-firing 3.236 

10% co-firing 4.359 
Logging Residues 

15% co-firing 5.006 

 

As we can see from the table, costs per ton decrease as co-firing ratio increases, 

in general. This happens due to the spread of fixed costs over the longer hauling distance. 
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The hauling costs per ton were then multiplied by the required biomass quantity 

to determine the supplying cost for a 100 MW power plant. The results are presented in 

Table 8. 

 

Table 8. Annual Hauling Cost for Biomass Feedstock 

Feedstock Combustion Type 
Annual Hauling Cost 

($/power plant) 

Fired alone 3,563,693 

5% co-firing 98,256 

10% co-firing 215,348 
Switchgrass 

15% co-firing 345,169 

Fired alone 8,908,466 

5% co-firing 209,668 

10% co-firing 475,605 
Rice Straw 

15% co-firing 778,151 

Fired alone 7,803,806 

5% co-firing 2,541,530 

10% co-firing 3,414,331 
Softwood Residues 

15% co-firing 3,921,981 

Fired alone 7,613,303 

5% co-firing 2,456,064 

10% co-firing 3,333,178 
Hardwood Residues 

15% co-firing 3,833,076 
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4.4       Greenhouse Gas Emissions 

Biomass feedstock requires fossil fuel inputs for various stages of their 

production processes. The major fossil fuel energy inputs include fertilizer (mostly 

nitrogen which is made from natural gas), fossil fuel used in operating equipments 

during the planting, maintenance, and harvesting stages, and transporting feedstock to 

bio-refineries (Cook, and Beyea, 2000). These fossil-based energies are one of the main 

sources of anthropogenic CO2 emissions. This section provides the analysis of 

greenhouse gas emissions associated with switchgrass production and logging residues 

harvest. We do not include analysis of emissions related to the rice straw production here 

because rice straw is a byproduct of the rice, and rice straw is not specifically grown for 

energy generation usage. However, we will quantify the greenhouse gas emissions from 

harvesting, hauling and using rice straw at the energy producing stage in the power 

generating plants. We take a similar approach with regard to the logging residues. We do 

not consider emissions related to the forest production process. We only account for the 

emissions which accumulate the logging residue during the harvest stage and haul it to 

the power plant.  

The analysis of GHG emissions associated with the preparation of switchgrass is 

adopted from Qin et al (2006). Their switchgrass preparation process takes into account 

the total mix of activities required for growing switchgrass and transporting it to a bio-

energy plant. Qin et al (2006) analyzed the various pathways for switchgrass production 

for the lowest GHG emissions and concluded that the optimal combination of activities 

was establishing switchgrass after exiting cropping, harvesting switchgrass loose for 
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hauling and chopping, then transporting after compression into modules. All these 

activities require inputs such as fossil fuels, chemicals, fertilizers and herbicides that 

produce GHG emissions. Table 9 summarizes the energy consumption and the 

greenhouse gas emissions accumulated from machinery operations, except transportation, 

for switchgrass production process: 

 

Table 9.   GHG Emissions and Energy Consumption from Preparation of Switchgrass 

Source: Qin et al. (2006) 

 

Energy consumption for above listed activities sums up to 87 Btu/kg. Adding to 

this the energy consumption of 447 Btu/kg of switchgrass derived from use of lime and 

chemicals, total energy consumption is 534 Btu/kg of switchgrass.  

Adding up the CO2-equivalent emissions from switchgrass production activities 

and usage of lime and chemicals we arrived at a total of 198.2 grams of CO2-equivalent 

emissions per kilogram of switchgrass. Table 10 shows GHG Emissions and energy 

consumption from use of lime and chemicals. 

Switchgrass 
preparation 
stage 

Alternative 
operations 

Energy 
Consumption 
(Btu/kg 
switchgrass) 

CO2 
emissions 
(grams/kg 
switchgrass) 

N2O 
emissions 
(grams/kg 
switchgrass) 

CH4 
emissions 
(grams/kg 
switchgrass) 

CO2-eq 
emissions 
(grams/kg 
switchgrass) 

Establishment 
Re-crop 
Fields 

5 0.4 0.9E-5 0.5E-3 0.4 

Growth Growth 24 1.9 4.5E-5 2.4E-3 2.0 

Harvest 

Loose, 
hauling 
and 
chopping 

59 4.7 1.1E-4 0.5E-2 4.8 
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Table 10.   GHG Emissions and Energy Consumption from Use of Lime and Chemicals 

Emission species Energy CO2 N2O CH4 CO2-Eq 

Emissions and energy consumption 
from fertilizer and Atrazine 
(g or btu /kg switchgrass) 

441 28.2 2.03E-1 6.5E-02 89.9 

Emissions and energy consumption 
from agriculture lime 
(g or btu/kg switchgrass) 

6 9.2 1E-05 5E-04 9.2 

Emissions and energy consumption 
from all chemicals 
(g or btu/kg switchgrass) 

447 37.4 2.03E-01 6.5E-02 99.1 

Source: Qin et al. (2005) 

 

Applying these estimates to the amount of switchgrass that can be produced by 

East Texas counties converting rice to switchgrass we have the annual results shown in 

Table 11.   

 

Table 11.   Annual Energy Consumption and GHG Emissions from Switchgrass 

Preparation in East Texas 

Region 
Switchgrass 

(tons/year) 

Total Energy 

consumption 

(Btu/year) 

Total CO2  

Emissions 

(grams/year) 

Total N2O  

Emissions 

(grams/year) 

Total CH4  

Emissions 

(grams/year) 

Total CO2-eq. 

Emissions 

(grams/year) 

East 
Texas 

215088.4 1.04392E+11 8.664E+09 39642358.1 14224606.2 2.0742E+10 

 

In the case of rice straw, another procedure was used to quantify the greenhouse 

gas emissions related to the harvest of rice straw. Summers et al evaluated GHG 

emissions during the rice straw harvest. Their harvesting scenario assumed rice straw 
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harvesting process is comprised of: swathing into windrows, baling in large square bales, 

and moving to road side for transport. The resultant GHG emission factors are shown in 

Table 12.  Table 13 represents the annual fuel consumption and GHG emissions from 

rice straw harvest. 

 

Table 12.   Emission Factors during Harvest of Rice Straw 

Operation CO2 Emissions 
(g/kg) 

NOx Emissions 
(g/kg) 

CH4 Emissions 
(g/kg) 

CO2-eq. Emissions 
(g/kg) 

Swathing 5.156 0.128 0.003 5.210 

Ranking 1.238 0.012 0.001 1.249 

Bailing 5.952 0.109 0.002 5.990 

Roadsiding 2.527 0.045 0.001 2.543 

Total 14.873 0.294 0.007 14.992 

Source : M.D. Summers et al. 

 

Table13.  Annual Fuel Consumption and GHG Emissions from Rice Straw Harvest  

Region 
Rice straw 
(tons/year) 

Total CO2 
emissions (g/kg) 

Total NOx 
emissions (g/kg) 

Total CH4 
emissions (g/kg) 

Total CO2-
Equivalent 

emissions (g/kg) 

East 

Texas 
8399.187 124,921,114 2,469,361 58794.31 1.26E+08 

 

  A different procedure was used to quantify the greenhouse gas emissions related 

to the harvest of logging residues. The Forest Residues Transportation Costing Model 

(FRTCM) (Rummer, 2001) was utilized to evaluate the logging residue harvest scenario. 

This spreadsheet calculator is designed to help users create scenarios by comparing 
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alternative methods of moving biomass from the forests to a bio-energy facility and 

allows estimating loading and hauling costs for different combinations of equipment as 

well as consideration of several other operations. It is available from the USDA Forest 

Service website. We assumed that logging residues were loaded by a knuckleboom 

loader into a container truck and hauled 2.5 miles to a disk chipper for chipping. Then, 

the disk chipper was directly loading chipped residue to a 120 cubic yard van-type truck, 

which was then transported to bio-energy producing facility. The gallons of diesel 

required per ton of harvested residue were then determined from the model as 0.99 

gal/ton. In order to express the emissions from logging residue harvest in grams per 

kilogram of logging residue, additional adjustments were made to the FRTCM. 

Specifically, we made adjustments to load size, the weight of diesel, conversions to 

kilograms, and moisture content. Finally, the diesel amounts were multiplied by the 

following diesel emission factors to get the total residue emissions:, 3188.068276 grams 

of Carbon Dioxide per kilogram of diesel, 0.08 grams of Methane per kilogram of diesel  

and 0.107918583 Nitrous Oxide grams of Methane per kilogram of diesel (Wang and 

Santini, 2000). Table 14 summarizes the results of emission calculations. Table 15 

represents the annual fuel consumption and GHG emissions from logging residue 

harvest.   

 

Table 14.  GHG Emissions from Collection of Logging Residues per kg of Residue  

 
Energy 

consumption 
(Btu/kg) 

CO2(g/kg) N2O(g/kg) CH4(g/kg) 
CO2-Eq. 

emission (g/kg) 

Logging residue 137.5 11.28 0.00038 0.00028 11.403 



 

 

41 

Table 15.   Annual Fuel Consumption and GHG Emissions from Logging Residue 

Harvest  

Region 
Recoverable 

logging residue 
(wet tons) 

Total CO2 
emissions (g/kg) 

Total N2O 
emissions (g/kg) 

Total CH4 
emissions (g/kg) 

Total CO2-
Equivalent 

emissions (g/kg) 

East 
Texas 

3,383,900 40,428,158,593 1,368,524.514 1014486.644 4.04E+10 

 
 

4.4.1 GHG Emissions from Hauling Biomass Feedstock 

Greenhouse gases are emitted during the biomass feedstock establishment, 

maintenance, harvest, hauling and combustion stages. Here we present estimates for 

emissions from hauling the feedstock to the power plant. Switchgrass hauling emissions 

were adapted from Qin et al (2006), shown in Table 16. 

 

Table 16.   GHG Emission from Hauling Switchgrass  

Biomass 
CO2 

emissions 
(g/kg) 

N2O 
emissions 

(g/kg) 

CH4 
emissions 

(g/kg) 

CO2-eq 
emissions 

(g/kg) 

Fired-alone 13.21 0.0008 0.0148 13.78 

5% 8.73 0.0005 0.0098 9.105 

10% 9.26 0.0005 0.0104 9.663 
Switchgrass 

15% 9.67 0.0006 0.0108 10.09 

 

Emissions from hauling rice straw were adapted Switchgrass model by Qin et al 

(2006). Here we assume to use 20 ton load size truck. 
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Table 17.   GHG Emission from Hauling Rice Straw 

Biomass 
CO2 

emissions 
(g/kg) 

N2O 
emissions 

(g/kg) 

CH4 
emissions 

(g/kg) 

CO2-eq 
emissions 

(g/kg) 

Fired-alone 15.35 0.001 0.017 16.01 

5% 7.48 0.0004 0.0084 7.797 

10% 8.41 0.0005 0.0094 8.776 
Rice straw 

15% 9.13 0.0005 0.0102 9.528 

 

Table 17 shows the GHG emission from hauling rice straw. Emissions from 

hauling logging residue were estimated using the GREET Model. We first determined 

the gallons of diesel required to haul a ton of harvested feedstock. This was done by 

dividing twice the average hauling distance by truck fuel efficiency, which was assumed 

at 5 miles per gallon.  Table 18 represent the calculating result of GHG emissions from 

hauling logging residue to the power plant  

 

Table 18.   GHG Emissions from Hauling Logging Residue to the Power Plant 

Biomass 
CO2 

emissions 
(g/kg) 

N2O 
emissions 

(g/kg) 

CH4 
emissions 

(g/kg) 

CO2-eq 
emissions 

(g/kg) 

Fired-alone 0.461 1.56E-05 1.16E-05 4.60E-01 

5% 0.103 3.49E-06 2.58E-06 1.03E-01 

10% 0.146 4.93E-06 3.65E-06 1.46E-01 

Logging 
Residue 

15% 0.178 6.04E-06 4.48E-06 1.78E-01 



 

 

43 

4.4.2 GHG Emissions from Combustion of Biomass Feedstock 

 Numerous studies indicate that biomass fuels provide substantial environmental 

benefits through absorbing carbon dioxide during growth and emitting it during 

combustion (McCarl et al, 2000 and Demirbas, 2004) [A graph showing the recycling 

process will be good]. This way biomass fuels participate in the atmospheric carbon 

dioxide recycling and do not contribute to the pool of greenhouse gas emissions. In 

essence, biomass consumes the same amount of CO2 from the atmosphere during growth 

as is released during combustion (Demirbas, 2004.).  Therefore, biomass is considered a 

zero net carbon dioxide emission fuel source. For example, the switchgrass carbon 

content is 42.04 percent by weight, or 420.4 g of carbon per kilogram of switchgrass. 

Assuming that all the carbon in switchgrass is converted from CO2 through the 

photosynthesis process, the CO2 used by switchgrass can be calculated from the carbon 

content of switchgrass. This calculation by Qin et al (2006) is equal to 1540.5 g CO2/kg 

of switchgrass. We further assume that this carbon will be released during combustion. 

However, since combustion emissions match the photosynthetic uptake, overall there 

will be net zero emissions from burning biomass as the sole feedstock at the power plant 

(Qin et al, 2006).  This analysis also holds for rice straw and logging residue as the 

switchgrass burned alone case was constructed based on extrapolation of results from 

wood-fired power generation.  

Overall, all three biomass feedstock contribute no CO2 emission during the 

combustion process. In contrast, combustion of coal generates significant amounts of 

emissions, even though coal-fired steam power boilers in the utility power industry in 
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the U.S. have much better heat rates than biomass-fired boilers (For example, coal-fired 

steam power boilers have heat rates ranging from 9.5 to 13.7 MJ/kWh equating to HHV 

efficiency 25% to over 37%,  on a net station heat rate basis, whereas existing biomass 

power plants have heat rates from 13.7 to 21.1 MJ/kWh or even higher, which 

correspond to HHV efficiencies from 25% to 17% or lower (Hughes, 2000)). Carbon 

dioxide emissions from coal were derived by Qin et al. using the U.S.EPA (2002) report 

and are summarized in Table 19. Table 20 is shown the calculated result of GHG 

emission from switchgrass, and logging residue combustion. 

 

Table 19.   GHG Emission from Coal Combustion 

Emission species CO2 N2O CH4 SOx CO 

Emission factors 
(g/kg coal) 

2085 0.0313 0.022 17.16 0.25 

Emissions 
(g/kWhr) 

935 0.0145 0.010 7.69 0.12 

 

 

Table 20.   GHG Emission from Switchgrass, and Logging Residue Combustion 

Emission species CO2 N2O CH4 SOx NOx CO 

g/kg switchgrass 1525 0.09 0.14 0.17 3.37 4.12 

g/kWhr by switchgrass 1660 0.10 0.16 0.19 3.66 4.49 

g/kg logging residue 1755 0.12 0.19 0.22 1.98 5.40 

g/kWhr by logging residue 1509 0.10 0.16 0.19 1.70 4.64 
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For rice straw, the methodology for estimating greenhouse gas emissions from 

combustion of rice straw is consistent with the Revised 1996 IPCC Guidelines 

(IPCC/UNEP/OECD/IEA, 1997). In order to estimate the amounts of carbon and 

nitrogen released during combustion, the following equations were used:  

Carbon Released = (Residue/Crop Product Ratio) × (Dry Matter Content of the 

Residue) × (Burning Efficiency) × (Carbon Content of the 

Residue) × (Combustion Efficiency) 

Nitrogen Released = (Residue/Crop Product Ratio) × (Dry Matter Content of the 

Residue) × (Burning Efficiency) × (Carbon Content of the 

Residue) × (Combustion Efficiency) 

 

Table 21.   Assumptions for Estimating Emissions from Rice Straw Combustion 
 

 Residue/Crop Ratio 
Dry matter fraction 

(%) 
Carbon fraction 

(%) 
Nitrogen fraction 

(%) 

Rice 1.27 0.91 0.3806 0.0072 

 

The assumed parameters are shown Table 21. The burning efficiency and 

combustion efficiency for rice straw were assumed to be 0.93 and 0.88, respectively. 

 

Table 22.   Greenhouse Gas Emission Ratios 

Greenhouse Gas CO2 CH4 CO N2O NOx 

Emission Ratio 3.67 0.005 0.060 0.007 0.121 
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Table 22 shows the GHG emission ratio each emission factors. GHG emissions 

from combustion rice straw are derived by above formula, which is shown Table 23. 

 

Table 23.   GHG Emission from Rice Straw Combustion  

Emission species CO2 N2O CH4 NOx CO 

g/kg rice straw 1320 0.477 1.80 0.82 21.60 

g/kWhr rice straw 1188 0.4293 1.62 0.738 19.44 

 

4.4.3 GHG Emissions from Co-firing Cases 

The following analysis is based on the retrofitting an existing coal fired boiler to 

us the switchgrass, or rice straw or logging residue as co-firing feedstock. We examined 

all three biomass feedstock at 5, 10 and 15% co-firing. 

 

Table 24.   Emissions from Biomass Feedstock Co-firing Scenarios 

       

Cofiring Ratio – 5% 
Emission Species 

CO2(g/kWh) N2O(g/kWh) CH4(g/kWh) 

Switchgrass 971.2838 0.018235 0.016995 

Rice Straw 947.6535 0.034802 0.09038 

Logging Residue 963.695 0.018493 0.01754 
 

   

    

Cofiring Ratio – 10% 
Emission Species 

CO2(g/kWh) N2O(g/kWh) CH4(g/kWh) 

Switchgrass 1007.57 0.022434 0.024125 

Rice Straw 960.3095 0.055567 0.170895 

Logging Residue 992.3926 0.02295 0.025215 
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Table 24 continued 
 

    

Cofiring Ratio - 15% 
Emission Species 

CO2(g/kWh) N2O(g/kWh) CH4(g/kWh) 

Switchgrass 1043.857 0.026632 0.031255 

Rice Straw 972.9656 0.076332 0.25141 

Logging Residue 1021.09 0.027407 0.03289 

 

4.5   Sequestration of Carbon Dioxide 

Carbon sequestration occurs in the soil during switchgrass production. 

McLaughlin et al. analyzed soil carbon gains in the soil. Their studies indicated that 

carbon accumulation is comparable to, or greater than the 1.1 tonne carbon per hectare-

year reported for perennial grasses (McLaughlin et al, 1998). Several years of 

switchgrass cultivation are required to realize the benefit of soil carbon sequestration 

(Ma et al, 2000). Using a conservative estimation, the credit for soil carbon dioxide 

sequestration was 179.9 g/kg switchgrass (Qin et al, 2006). However, switchgrass is 

grown for 10 years on the same fields, CO2 accumulation in the soil is likely to reach a 

saturation value, which should be taken into account into any long-term studies. 

 

4.6   Coal 

According to D.O.E report Texas need 69,810,000 tons of coal for generating 

electricity and generated 99,866,000 MWhr of electricity. And Coal average price is 

$26.56/ton ($1.32 Million Btu) at 2004. According to Qin et al., 0.44844 Kg of coal need 

for 1KWh generate electricity.  
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In this study, we use the assumption that is assumed by McCarl et al. (2000) that 

the annual energy requirement for a 100 MW power plant is 7 trillion Btu (TBtu). We 

can calculate required Coal quantity to produce 7 trillion Btu. According to my 

calculation, required Coal quantity is 345,942 tons. Per Unit Cost of Coal is $26.56/ton, 

and Total Cost per year is $9,188,219.52/year. 

 

4.6.1 GHG Emissions from Coal before Combustion 

Stages of Coal from mine to generating power are divided by Mining, 

Transportation, and Combustion. Greenhouse gases are emitted during stages. Coal 

Mining and Transportation stage emissions were adapted from GREET Model, were 

shown Table 25. 

 

Table 25.   GHG Emission from Coal Mining and Transportation 

Emission species CO2 N2O CH4 CO2–Eq 

Emission factors (g/kg coal) 64.246 0.00303 2.6024 124.9997 

 

Coal Combustion stage Emission describes at Chapter IV, 4.4.2 GHG Emissions 

from combustion of biomass feedstock. Here, Calculate total GHG Emission from Coal 

during whole life cycle. The results are represented in Table 26. 

 

Table 26.   GHG Emission from Coal  

Emission species CO2 N2O CH4 CO2–Eq 

Emission factors (g/kg coal) 2213.946 0.0373 5.2272 2345.217 
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 4.7   Total Cost of Biomass Feedstock 

We calculate total cost of biomass feedstock using the following method. 

For switchgrass, 

per unit cost ($/ton) = Production Cost + Harvesting Cost + Hauling Cost 

For rice straw and logging residue, 

Per unit cost ($/ton) = Collecting Cost + Hauling Cost   

Where, Production Cost = Establishment Cost + Maintenance Cost. 

 

Unit Cost of Switchgrass is $30.16 per ton which is more expensive than other 

feedstock. Because Switchgrass is newly cultivated, total unit cost includes Production 

Cost. Rice Straw and Logging Residue are currently cultivated, so we just include 

Collecting Cost and Hauling Cost. Table 27 and Table 28 show the total unit cost and 

annually cost of biomass feedstock. Figure 2 and 3 represent them graphically.    

 

Table. 27. Total Unit Cost of Biomass Feedstock 

 Fired-Alone 
($/ton) 

5% Cofiring 
($/ton) 

10% Cofiring 
($/ton) 

15% Cofiring 
($/ton) 

Switchgrass 37.16 34.02 34.39 34.68 

Rice Straw 27.68 20.19 21.09 21.77 

Logging Residue 18.67 11.95 13.07 13.72 
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Fig 2.   The Total Cost per Unit of Biomass Feedstock 

 

 

Table. 28. Total Annual Cost of Biomass Feedstock ($/Annually Required Amount) 

 
Fired-Alone  5% Cofiring 10% Cofiring 15% Cofiring 

Switchgrass 18918118.84 865977.399 1750791.461 2648332.998 

Rice Straw 17440129.22 636251.553 1328771.75 2057901.223 

Logging Residue 14517226.37 464566.7994 1016478.068 1600200.457 
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Fig 3.   The Total Cost per Year of Biomass Feedstock 

 

4.8   Total GHG Emission until Generating Electricity 

At Chapter IV, 4.4 Greenhouse Gas Emissions, we already found GHG Emission 

from each biomass feedstock. The summation of each biomass feedstock’s GHG 

Emission and compare to Coal at Table 29 and Figure 4. 

 

Table 29.   Total GHG Emission from Biomass Feedstock and Coal 

Emission species CO2 N2O CH4 CO2–Eq. 

Coal 
(g/kg) 

2213.946 0.0373 5.2272 2345.217 

Switchgass 
(g/kg) 

1620.01 0.49697 0.2932 1809.755 

Rice Straw 
(g/kg) 

1350.233 0.772 1.824 1407.762 

Logging Residue 
(g/kg) 

1766.741 0.1204 0.19029 1842.328 
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Fig 4.   The Total CO2 and CO2-Equivalent Emission from Biomass Feedstock and Coal 

 

4.9   Lifecycle GHG Emission Relative to Co-firing Ratio 

The equations for calculate Lifecycle GHG emission (about CO2) are as follows. 

Switchgrass Case : Emission of CO2 = ∑∑∑∑∑∑ −++++ SeCETEHEME
EE

....
10

.
 

Where E.E is Emission from Establishment,  

            E.M is Emission from Maintenance, 

            E.H is Emission from Harvesting, 

            E.T is Emission from Hauling, 

            E.C is Emission from Coal combustion 

            Se is Sequestration from soil. 
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Rice Straw Case : Emission of CO2 = ∑∑∑ ++ CETEHE ...  

Where E.H is Emission from Harvesting, 

            E.T is Emission from Hauling, 

            E.C is Emission from Coal combustion. 

 

Logging Residue Case : Emission of CO2 = ∑∑∑ ++ CETEHE ...  

Where E.H is Emission from Harvesting, 

            E.T is Emission from Hauling, 

            E.C is Emission from Coal combustion. 

 

All Cases do not consider Emission from Biomass feedstock combustion, 

because all of biomass feedstock do CO2 (Carbon dioxide) offset during they grow. That 

amounts are almost same as the amount of Emission from Combustion. 

Table 30 and Figure 4 show the quantity of Lifecycle GHG Emission with co-

firing ratio from each biomass feedstock and the trend of lifecycle GHG emissions with 

the co-firing ratio. The simulated relation gives a linear function during the low co-firing 

ratio from 5, 10, and 15% as 

Switchgrass case        : Emission of CO2 = - 9.117 * co-firing % + 934.997 

Rice straw case          : Emission of CO2 = - 9.350 * co-firing % + 934.997 

Logging residue case : Emission of CO2 = - 9.249 * co-firing % + 934.997 
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Table 30.   Lifecycle GHG Emission (about CO2) from Biomass Feedstock (g/Kg) 

Co-firing Ratio Switchgrass Rice Straw Logging Residue 

5% 889.4122 888.2475 888.7523 

10% 843.827 841.4977 842.5072 

15% 798.2418 794.7478 796.262 
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Fig 5.   Lifecycle GHG Emissions as a Function of Co-firing Ratio 
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CHAPTER V   

GHG INVESTIGATION 

 

5.1   Breakeven Price between Biomass and Coal Prices 

Currently, the price of biomass is currently do the comparison in a table not 

competitive compared with the price of coal and the low thermal efficiency of biomass 

makes the situation even worse. The economic issue is commercializing biomass for 

power generation. Co-firing can much better improve the situation, but the economic 

barrier is still unsurpassable without stimulating policy such as taking CO2 offset 

subsidy or imposing CO2 tax. Therefore, the breakeven price can be a kind of index for 

making policy. 

Figure 6 shows the breakeven price of switchgrass, rice straw, logging residue 

and coal without other subsidy. If we take the average coal price of 26.56 $/ton, then the 

breakeven switchgrass price must be about 10.94 $/ton for it to replace coal, which is 

much lower than the real cost. However, Rice Straw and Logging Residue do not need to 

consider cultivate costs (Establishment cost and maintenance cost). So their costs are 

relatively cheaper than Switchgrass.  Consequently, the breakeven rice straw price must 

be about 13.23 $/ton, and the breakeven logging residue price must be about 13.85 $/ton, 

which is little different to the real cost. The analysis also shows that even if switchgrass, 

rice straw, and logging residue have production costs (37.16 $/ton, 27.68 $/ton, 18.67 

$/ton, respectively), switchgrass can match up with coal only when the price of coal 

reaches 90.24 $/ton, rice straw can match up with coal only when the price of coal 
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reaches 55.56 $/ton, and logging residue can match up with coal only when the price of 

coal reaches 35.8 $/ton. In Switchgrass case, the coal price needed is much higher than 

current average level of coal price. In Rice Straw and Logging Residue case, the coal 

price needed is little higher than current average level of coal prices.  
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Fig 6.   Effect of Biomass Feedstock and Coal Cost as Breaks Even 

 

5.2   CO2 Offset Subsidy 

The high cost of producing biomass is a big obstacle for biomass to become a 

practical method to mitigate GHG emissions from power generation (Qin et al, 2006). 

Lifecycle analyses of biomass and co-firing system with biomass and coal indicate that 

biomass will generate less GHG emissions than fossil fuels. But co-firing system would 

only be beneficial. The reasons is the costs of biomass fired alone plant (modification 

cost, additional labor costs, maintenance costs, etc.) are more than expensive to operate 
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the co-firing plant. For these reasons, CO2 Offset Subsidy is needed for biomass which 

would be made the commercialization. 

The major costs in the co-firing system include the cost of fuel and the capital 

cost of modification of the power plant to required biomass to be co-firing with coal. 

However, the important thing is that valuing the CO2 offset is included in the cost of 

biomass. The calculation of CO2 offset subsidy is based on the idea that generating equal 

amount of electricity.  

According to previous chapters, we can know as the Co-firing Ratio increase, the 

CO2 reduction quantity is increase. The equation of CO2 reduction quantity is the same 

as follows. 

In Switchgrass case, the CO2 reduction quantity is equal to  

∑∑∑ +− QuantityionSequestratCarbonEmissionGHGLifecycleEmissionGHG  

In Rice Straw and Logging Residue case,  

The CO2 reduction quantity = ∑∑ − EmissionGHGLifecycleEmissionGHG  

Table 31 and Figure 7 show the CO2 reduction quantity of switchgrass, rice 

straw, logging residue as co-firing ratio. 

 

Table 31.   The CO2 Reduction Quantity from Biomass Feedstock (g/Kg) 

Co-firing Ratio Switchgrass Rice Straw Logging Residue 

5% 262.936 59.406 75.448 

10% 345.973 118.812 150.895 

15% 429.009 178.218 226.342 
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Fig 7.   CO2 Reduction as a Function of Co-firing Ratio 

 

Policy makers can use the CO2 reduction quantity from Biomass feedstock as an 

index of measurement of subsidy. One of the method for subsidy is policy makers assign 

the Carbon prices. That means the cost of coal fired alone is made to be equal to the cost 

of biomass fired alone or the cost of biomass co-firing with coal after CO2 offset subsidy 

is added. 

 

5.3   Biomass Fired Alone 

Currently the application of biomass as the sole source of fuel for power plants 

with large capacity is not common or economical (Qin et al, 2006). These power plants 

are not very competitive without research innovations or subsidies (McCarl et al, 2000). 

In addition, bio-fuels have higher volatility, lower sulfur and ash content, and a lower 

heating value compared to coal. Some bio-fuels can have a relatively high alkaline metal 
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content, and are also rich in chlorine and silica (Nelson, 2001). This nature of biomass 

brings other problems to power generation such as slagging and fouling which make the 

biomass only a less attractive investment alternative. As mentioned earlier, a 100 MW 

power plant requires about seven trillion BTUs and this in turn would require burning 

509,099 tons of switchgrass, 630,108 tons of rice straw, or 777,778 tons of logging 

residues. Based on our estimations of biomass production and hauling costs, the cost of a 

ton of biomass feedstock delivered to the power plant would be: $37.16 for switchgrass, 

$27.678 for rice straw, and $18.665 for a ton of logging residues, respectively. This 

translates into the total cost of delivering the annual required amount of feedstock to the 

power plant of $18,918,118.84 for switchgrass, $17,440,129.22 for rice straw, and 

$14,517,319.7 for logging residues. Additionally, the amount of required coal is 345,942 

ton per year, and the annual cost of coal fired alone power plant is $9,188,219.52 per 

year at same conditions. Figure 8 represent the annual costs of biomass feedstock and 

coal graphically. 
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Fig 8.   Annual Costs of Biomass Feedstock and Coal 
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In addition, comparing the biomass availability in East Texas counties with a 100 

MW power plant biomass requirement reveals that if rice growing counties decided to 

switch land to grow switchgrass, individually they would not be able to supply the 

required amount of biomass feedstock. Furthermore, these counties would not be able to 

support the power plant even if they jointly supplied their annual switchgrass production. 

The total amount of joint annual switchgrass production tops 215,088.42 tons which is 

almost 42 percents of the plant requirement of 509,099 tons. This analysis indicates that 

East Texas rice producing counties can not currently support a 100 MW rice straw fired 

biomass power plant. However, co-firing could be a more feasible alternative for these 

counties.  

In contrast, our estimates of logging residue indicate that although the counties 

are rich in forest land they would not be able to individually supply the required amount 

of logging residue (777,778 tons) for generating electricity, they could jointly generate 

about 3.3 million tons of logging residue for biomass. Significantly large average 

hauling distances that were estimated in Chapter IV show that transportation cost could 

be a main obstacle in delivering feedstock to the power plant. In addition, choosing a 

location for a power plant which would minimize the feedstock hauling costs and still be 

economically feasible may be a significant challenge.  

In the long run, the technological improvements and an increase in biomass 

availability and costs could make this alternative viable. In this case, construction of 

biomass-only power plant in East Texas will require several important considerations. 

The feedstock availability analysis in the forest rich counties shows that Angelina, Cass, 
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Jasper, Newton, Polk, and Tyler are each able to supply over 100,000 tons of logging 

residue to the power plant with Tyler County providing the largest volume, 168,588 tons 

per year. In addition, Tyler County is surrounded with several other counties (e.g. Hardin, 

Harrison, Nacogdoches, San Augustine, and Trinity) which could be also considered as 

second large suppliers of logging residue biomass. Assuming that the biomass feedstock 

is uniformly spread over the forest acreage of these counties, a potential location for a 

power plant could be proposed in the Tyler County. One additional possibility would be 

to assume that a power plant would be receiving various biomass feedstock. In this case, 

we would consider locating a power plant in Chambers, Hardin, Harris, Jefferson, 

Liberty, or Orange County, i.e. counties which could supply switchgrass, rice straw and 

logging residue to a power plant. However, our feedstock estimates for these counties 

indicate that this case is also infeasible. None of these counties can generate enough 

biomass to support the annual operations of the 100 MW power plants.  

In summary, the co-firing alternative appears to be the most feasible in the East 

Texas region. Moreover, some recent studies proved that co-firing could also overcome 

the problems of stemming from the biomass nature (e.g. slagging, fouling) and perhaps 

is also environmentally beneficial (Boylan et al, 2000). 

 

5.4   Co-firing 

Co-firing of biomass in retrofitted coal-fired power plants generally have higher 

efficiencies,  lower capital requirements, and lower electricity costs than combusting the 

same fuels in dedicated biomass plants (Nelson, 2001). The local availability and cost of 
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biomass feedstock are the most important factors in determining the feasibility of co-

firing at a specific location. In addition, the potential for co-firing biomass with an 

existing coal plant is highly dependent on the cost of transportation from the areas of 

lowest cost biomass production to coal plants selected for co-firing.  

The following analysis is based on the retrofit of an existing coal fired boiler to 

allow the introduction of switchgrass, rice straw or logging residue biomass feed stream. 

We adjusted the biomass required amounts, greenhouse gas emissions, and feedstock 

cost by the co-firing ratio. Co-firing budgets were created for all three biomass feedstock 

at 5%, 10% and 15% co-firing. 

The feedstock costs at the power plant gate are calculated based on the feedstock 

production and hauling costs estimated for our feedstock in earlier sections.  For 

example, switchgrass per ton costs at the plant gate are $25.35 for 5%, $25.72 for 10%, 

and $26.01 for 15% co-firing cases, costs for rice straw case are $20.105 for 5%, 

$21.088 for 10%, and $21.773 for 15% co-firing cases. Same costs for a ton of logging 

residue are $11.946, $13.069, and $13.716, respectively. The cost goes up as the co-

firing ratio increases. This is mainly because of increasing hauling distance from the 

farm or forest site to the power plant gate.  

Further, the analysis of feedstock potential of East Texas counties to support the 

annual power plant operations shows that the counties ranged differently in this respect. 

With regard to co-firing coal with 5% of switchgrass, only Chambers, Jefferson and 

Liberty counties demonstrate the adequate potential. With 10% co-firing, it is only 

Chambers and Jefferson counties, and only Jefferson County has a potential to support 
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the 15% co-firing operation. In terms of rice straw, again Chambers, Jefferson and 

Liberty counties show the potential for only 5% co-firing cases. Logging residue 

potential analysis indicate that only Cass, Jasper, Polk, and Tyler counties have a 

biomass potential for all three co-firing cases. Angelina, Cherokee, Hardin, Harrison, 

Nacogdoches, Newton, Panola, San Augustine, and Trinity counties present a potential 

for only 5% and 10% co-firing cases, and Houston, Liberty, Marion, Rusk, Sabine, 

Shelby, Smith, and Walker counties can supply biomass for only 5% co-firing case.   

 

5.5   Future Work 

We examine the economic, energy and GHG issues of using switchgrass, rice 

straw, and logging residue as alternate or supplementary feedstock for power generation 

using an integrated approach. Progress in evaluating economic issues associated with 

biomass feedstock has been made, but deficiencies still exist. In particular it is important 

to quantify and value the social and private benefits (and costs) that might result from 

large-scale production and use of biomass feedstock.  

For the future work analytical needs include,  

1.  Improved biomass feedstock supply and demand curves 

2. Improved understanding of the implications of land competition between 

biomass feedstock and conventional crops 

3. Estimates of the farm income and rural employment impacts of producing 

biomass feedstock 

4.  Estimates of the impact of competing uses on the price of biomass feedstock 
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5. Evaluation of the role risk plays in farmer decisions to produce biomass 

feedstock 
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CHAPTER VI   

SUMMARY 

  

In this thesis an integrated analysis was done that examined the economic 

implications of using agriculturally based feedstocks for bioenergy production in East 

Texas.  Specifically I examined the use of switchgrass, rice straw, and logging residue as 

feedstocks for electrical power generation in East Texas as a replacement for coal fired 

power generation. Life cycle analysis and Cost-Benefit analysis were used.  

Considering the total cost of a ton of biomass feedstock delivered to the power 

plant I found logging residue is the cheapest of the feedstocks. However the required 

quantity of biomass feedstock and energy efficiency is least with switchgrass. But I find 

that of the volumes of rice straw and switchgrass available would not be sufficient to 

support the required quantity for a solely fired power plant. Consequently, co-firing is 

likely the only feasible alternative with those feedstocks in East Texas.  

In the logging residue case, the counties in East Texas are not individually able to 

supply the required amount of logging residue for generating electricity, but they could 

jointly supply the required quantity. Both cases, fired alone and co-firing, could be 

feasible in the region. 

As we use more bio-energy for power generation, we will get less GHG emission, 

which will be an environmental benefit in the long run. The main problem is cost. 

Biomass feedstock production, harvesting and hauling costs are too high to 

commercialize biomass feedstock for power generation. So, I examined the break-even 
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price relative to coal.  Switchgrass requires a price than the other feedstocks, because it 

is not a byproduct requiring establishment, and maintenance costs. Moreover, in the 

logging residue case, I find the coal price needed is lower than current average level of 

coal price meaning there are cases where low degrees of co-firing is currently 

economically feasible.  

Bio-energy would also be made more competitive by the combination of a CO2 

GHG offset price that would penalize fossil fuel use and an exemption from the tax for 

renewable energy.  I find GHG offset prices can make biomass economically feasible. 

Such practices would raise the price people would be willing to pay for biomass 

feedstock which the value of the GHG net emissions in the fuels replaced.     

In presenting this research I must note several limitations that could be addressed 

in future work. First, the results are driven by the quality of the underlying data. Many 

data were derived from assumptions and basic models, and thus echo the quality and 

accuracy of these assumptions and models. Second, the findings reflect currently 

available technologies and associated data. However, technology may evolve rapidly, 

because of increased research efforts many of which are government funded. Also, 

progress in evaluating economic issues associated with biomass feedstock has been 

made, but deficiencies still exist.   
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