70 research outputs found

    Piezoelectric/Triboelectric Nanogenerators for Biomedical Applications

    Get PDF
    Bodily movements can be used to harvest electrical energy via nanogenerators and thereby enable self-powered healthcare devices. In this chapter, first we summarize the requirements of nanogenerators for the applications in biomedical fields. Then, the current applications of nanogenerators in the biomedical field are introduced, including self-powered sensors for monitoring body activities; pacemakers; cochlear implants; stimulators for cells, tissues, and the brain; and degradable electronics. Remaining challenges to be solved in this field and future development directions are then discussed, such as increasing output performance, further miniaturization, encapsulation, and improving stability. Finally, future outlooks for nanogenerators in healthcare electronics are reviewed

    Relationship Between Vegetation Biophysical Properties and Surface Temperature Using Multisensor Satellite Data

    Get PDF
    Vegetation is an important factor in global climatic variability and plays a key role in the complexinteractions between the land surface and the atmosphere. This study focuses on the spatial and temporalvariability of vegetation and its relationship with land–atmosphere interactions. The authors have analyzedthe vegetation water content (VegWC) from the Advanced Microwave Scanning Radiometer for EOS(AMSR-E), the leaf area index (LAI), the normalized difference vegetation index (NDVI), the land surfacetemperature (Ts), and the Moderate Resolution Imaging Spectroradiometer (MODIS). Three regions,which have climatically differing characteristics, have been selected: the North America Monsoon System(NAMS) region, the Southern Great Plains (SGP) region, and the Little River Watershed in Tifton,Georgia. Temporal analyses were performed by comparing satellite observations from 2003 and 2004. Theintroduction of the normalized vegetation water content (NVegWC) derived as the ratio of VegWC andLAI corresponding to the amount of water in individual leaves has been estimated and this yields significantcorrelation with NDVI and Ts. The analysis of the NVegWC–NDVI relationship in the above listed threeregions displays a negative exponential relation, and the Ts–NDVI relationship (TvX relationship) isinversely proportional. The correlation between these variables is higher in arid areas such as the NAMSregion, and becomes less correlated in the more humid and more vegetated regions such as the area ofeastern Georgia. A land-cover map is used to examine the influence of vegetation types on the vegetationbiophysical and surface temperature relationships. The regional distribution of vegetation reflects therelationship between the vegetation biological characteristics of water and the growing environment

    Evaluation of the Role of Hydroxyapatite in TiO2/ Hydroxyapatite Photocatalytic Materials

    Get PDF
    The TiO2/hydroxyapatite (HAp) composite has attracted much attention as a photocatalyst for pollution treatment in water or air because this composite can improve the properties of pure TiO2 including a low efficiency, narrow light response range, low adsorption capacity for hydrophobic contaminants, and difficult recovery of TiO2 particles after using in Aquarius environment. To obtain the best composite containing the two components including TiO2 and HAp, the role of HAp in TiO2/hydroxyapatite photocatalytic material should be analyzed and evaluated. This chapter will significantly present a review of the role of HAp in the TiO2/hydroxyapatite composite including the adsorption ability of contaminations and the promoted impacts of HAp component

    Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films

    Get PDF
    We investigated the effect of the Ag nanoparticles on the ferroelectric and piezoelectric properties of Ag/poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) composite films. We found that the remanent polarization and direct piezoelectric coefficient increased up to 12.14 μC/cm^2 and 20.23 pC/N when the Ag concentration increased up to 0.005 volume percent (v%) and decreased down to 9.38 μC/cm^2 and 13.45 pC/N when it increased up to 0.01 v%. Further increase in Ag concentration resulted in precipitation of Ag phase and significant leakage current that hindered any meaningful measurement of the ferroelectric and piezoelectric properties. 46% increase of the remanent polarization value and 27% increase of the direct piezoelectric coefficient were observed in the film with the 0.005 v% of the Ag nanoparticles added without significant changes to the crystalline structure confirmed by both X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) experiments. These enhancements of both the ferroelectric and piezoelectric properties are attributed to the increase in the effective electric field induced by the reduction in the effective volume of P(VDF-TrFE) that results in more aligned dipoles

    Piezoelectric Materials for Medical Applications

    Get PDF
    This chapter describes the history and development strategy of piezoelectric materials for medical applications. It covers the piezoelectric properties of materials found inside the human body including blood vessels, skin, and bones as well as how the piezoelectricity innate in those materials aids in disease treatment. It also covers piezoelectric materials and their use in medical implants by explaining how piezoelectric materials can be used as sensors and can emulate natural materials. Finally, the possibility of using piezoelectric materials to design medical equipment and how current models can be improved by further research is explored. This review is intended to provide greater understanding of how important piezoelectricity is to the medical industry by describing the challenges and opportunities regarding its future development

    Inter- and Intra-Annual Variability of Vegetation in the Northern Hemisphere and Its Association with Precursory Meteorological Factors

    Get PDF
    Determination of phenological variation is one of the most critical challenges in dynamic vegetation modeling, given the lack of a strong theoretical framework. Previous studies generally focused on the timing of a phenological event (e.g., bud-burst or onset of growing season) and its atmospheric prompts, but not on the interactive variations across phenological stages. This study, therefore, investigated the inter- and intra-annual variability existing in all the phenological stages and the relations of the variability with four meteorological variables (surface temperature (Ts), shortwave radiation (SW ), vapor pressure deficit (VPD), and precipitation (PRCP)) using a 25-year (1982-2006) dataset of leaf area index (LAI) from the Advanced Very High Resolution Radiometer (AVHRR). Our six study sites of each 4 degree x 4 degree grids (mixed forest in China, deciduous needle-leaf forest in Siberia, evergreen needle-leaf forest in western Canada, grass in Gobi, and crops in the Central United States and southeastern Europe) include various vegetation types, local climates, and land-use types in the mid-latitudes of the northern hemisphere. Empirical orthogonal function (EOF) analysis with detrended LAI anomalies identified the two leading EOF modes that account for the amplitude and phase of the monthly LAI variations. The inter-annual correlation between the principle components (PCs) of the two modes and the meteorological variables for spring and summer showed that the amplitude and phase modes (AM and PM, respectively) were affected by different dominant meteorological factors. Over most of the study regions, AM was positively correlated with PRCP and negatively with Ts, SW, and VPD,while PMwas predominantly positively correlated with Ts. The contrasting responses of the two EOFmodes to Ts reflect environmental limitations on plant growth such as early start of growth, but with a reduced value of maximum LAI in a year with a warm spring. In addition, insignificant correlations between AMand PRCP, as well as negative correlations between PM and PRCP, in the crop regions suggest that human interventions such as advanced irrigation systems also play a key role in vegetative activity

    Ferroelectric Polymer PVDF-Based Nanogenerator

    Get PDF
    This chapter deals with the development of ferroelectric polymer polyvinylidene fluoride (PVDF)-based nanogenerators. Due to its inherent flexibility, PVDF has been studied for application in nanogenerators. We first introduce PVDF and its copolymers, and briefly discuss their properties. Then, we discuss fabrication methods, including solution casting, spin coating, template-assisted method, electrospinning, thermal drawing, and dip coating. Using these methods, a wide variety of ferroelectric polymer structures can be fabricated. In addition to the performance enhancements provided by fabrication methods, the performance of PVDF-based nanogenerators has been improved by incorporating fillers that can alter the factors affecting the performance. Next, we review energy sources that can be exploited by PVDF-based nanogenerators to harvest electricity. The abundant energy sources in the environment include sound, wind flow, and thermal fluctuation. Finally, we discuss implantable PVDF-based nanogenerators. Another advantage of PVDF is its biocompatibility, which enables implantable nanogenerators. We believe that this chapter can also be helpful to researchers who study sensors and actuators as well as nanogenerators
    • …
    corecore