752 research outputs found

    The (Surprising) Sample Optimality of Greedy Procedures for Large-Scale Ranking and Selection

    Full text link
    Ranking and selection (R&S), which aims to select the best alternative with the largest mean performance from a finite set of alternatives, is a classic research topic in simulation optimization. Recently, considerable attention has turned towards the large-scale variant of the R&S problem which involves a large number of alternatives. Ideal large-scale R&S procedures should be sample optimal, i.e., the total sample size required to deliver an asymptotically non-zero probability of correct selection (PCS) grows at the minimal order (linear order) in the number of alternatives, but not many procedures in the literature are sample optimal. Surprisingly, we discover that the na\"ive greedy procedure, which keeps sampling the alternative with the largest running average, performs strikingly well and appears sample optimal. To understand this discovery, we develop a new boundary-crossing perspective and prove that the greedy procedure is indeed sample optimal. We further show that the derived PCS lower bound is asymptotically tight for the slippage configuration of means with a common variance. Moreover, we propose the explore-first greedy (EFG) procedure and its enhanced version (EFG+^+ procedure) by adding an exploration phase to the na\"ive greedy procedure. Both procedures are proven to be sample optimal and consistent. Last, we conduct extensive numerical experiments to empirically understand the performance of our greedy procedures in solving large-scale R&S problems

    Staffing under Taylor's Law: A Unifying Framework for Bridging Square-root and Linear Safety Rules

    Full text link
    Staffing rules serve as an essential management tool in service industries to attain target service levels. Traditionally, the square-root safety rule, based on the Poisson arrival assumption, has been commonly used. However, empirical findings suggest that arrival processes often exhibit an ``over-dispersion'' phenomenon, in which the variance of the arrival exceeds the mean. In this paper, we develop a new doubly stochastic Poisson process model to capture a significant dispersion scaling law, known as Taylor's law, showing that the variance is a power function of the mean. We further examine how over-dispersion affects staffing, providing a closed-form staffing formula to ensure a desired service level. Interestingly, the additional staffing level beyond the nominal load is a power function of the nominal load, with the power exponent lying between 1/21/2 (the square-root safety rule) and 11 (the linear safety rule), depending on the degree of over-dispersion. Simulation studies and a large-scale call center case study indicate that our staffing rule outperforms classical alternatives.Comment: 55 page

    Learning to Simulate: Generative Metamodeling via Quantile Regression

    Full text link
    Stochastic simulation models, while effective in capturing the dynamics of complex systems, are often too slow to run for real-time decision-making. Metamodeling techniques are widely used to learn the relationship between a summary statistic of the outputs (e.g., the mean or quantile) and the inputs of the simulator, so that it can be used in real time. However, this methodology requires the knowledge of an appropriate summary statistic in advance, making it inflexible for many practical situations. In this paper, we propose a new metamodeling concept, called generative metamodeling, which aims to construct a "fast simulator of the simulator". This technique can generate random outputs substantially faster than the original simulation model, while retaining an approximately equal conditional distribution given the same inputs. Once constructed, a generative metamodel can instantaneously generate a large amount of random outputs as soon as the inputs are specified, thereby facilitating the immediate computation of any summary statistic for real-time decision-making. Furthermore, we propose a new algorithm -- quantile-regression-based generative metamodeling (QRGMM) -- and study its convergence and rate of convergence. Extensive numerical experiments are conducted to investigate the empirical performance of QRGMM, compare it with other state-of-the-art generative algorithms, and demonstrate its usefulness in practical real-time decision-making.Comment: Main body: 36 pages, 7 figures; supplemental material: 12 page

    Online Risk Monitoring Using Offline Simulation

    Get PDF
    Estimating portfolio risk measures and classifying portfolio risk levels in real time are important yet challenging tasks. In this paper, we propose to build a logistic regression model using data generated in past simulation experiments and to use the model to predict portfolio risk measures and classify risk levels at any time. We further explore regularization techniques, simulation model structure, and additional simulation budget to enhance the estimators of the logistic regression model to make its predictions more precise. Our numerical results show that the proposed methods work well. Our work may be viewed as an example of the recently proposed idea of simulation analytics, which treats a simulation model as a data generator and proposes to apply data analytics tools to the simulation outputs to uncover conditional statements. Our work shows that the simulation analytics idea is viable and promising in the field of financial risk management

    Dimension Reduction in Contextual Online Learning via Nonparametric Variable Selection

    Full text link
    We consider a contextual online learning (multi-armed bandit) problem with high-dimensional covariate x\mathbf{x} and decision y\mathbf{y}. The reward function to learn, f(x,y)f(\mathbf{x},\mathbf{y}), does not have a particular parametric form. The literature has shown that the optimal regret is O~(T(dx+dy+1)/(dx+dy+2))\tilde{O}(T^{(d_x+d_y+1)/(d_x+d_y+2)}), where dxd_x and dyd_y are the dimensions of x\mathbf x and y\mathbf y, and thus it suffers from the curse of dimensionality. In many applications, only a small subset of variables in the covariate affect the value of ff, which is referred to as \textit{sparsity} in statistics. To take advantage of the sparsity structure of the covariate, we propose a variable selection algorithm called \textit{BV-LASSO}, which incorporates novel ideas such as binning and voting to apply LASSO to nonparametric settings. Our algorithm achieves the regret O~(T(dxβˆ—+dy+1)/(dxβˆ—+dy+2))\tilde{O}(T^{(d_x^*+d_y+1)/(d_x^*+d_y+2)}), where dxβˆ—d_x^* is the effective covariate dimension. The regret matches the optimal regret when the covariate is dxβˆ—d^*_x-dimensional and thus cannot be improved. Our algorithm may serve as a general recipe to achieve dimension reduction via variable selection in nonparametric settings
    • …
    corecore