23,522 research outputs found

    Si(Li) X-ray astronomical spectroscopy

    Get PDF
    The general considerations involved in the choice of Si(Li) as a non-dispersive spectrometer for X-ray astronomy are discussed. In particular, its adaptation to HEAO-B is described as an example of the space-borne application of Si(Li) technology

    X-ray astronomical spectroscopy

    Get PDF
    The current status of the X-ray spectroscopy of celestial X-ray sources, ranging from nearby stars to distant quasars, is reviewed. Particular emphasis is placed on the role of such spectroscopy as a useful and unique tool in the elucidation of the physical parameters of the sources. The spectroscopic analysis of degenerate and nondegenerate stellar systems, galactic clusters and active galactic nuclei, and supernova remnants is discussed

    X-ray astronomy, 1

    Get PDF
    X ray astronom

    Spectroscopy of compact extragalactic X-ray sources

    Get PDF
    The X-ray spectra of compact extragalactic sources obtained from the HEAO-1 A-2 experiment and the solid-state spectrometer onboard HEAO-2 (the Einstein Observatory) are reviewed. Seyfert spectra are remarkably consistent with characteristic power-law spectra of energy index alpha = 0.7 + .1 over a dynamic range of almost 100 in both luminosity for the whole sample, and energy for individual members. Radio-quiet quasars have similar spectra, perhaps slightly steeper, for the limited sample available. New solid-state spectrometer results for NGC 4151 yield a consistent picture for the geometry of the broad-line clouds in both these related radio-quiet classes of galactic nuclei. Radio-loud objects, especially BL Lacs, are considerably more variable in spectrum as well as luminosity. Direct synchrotron and synchrotron-self-Compton components are consistent with what we observe from these objects. Finally, the role of spectroscopy in addressing the extent to which compact extragalactic nuclei might contribute to the diffuse X-ray background is discussed

    Spectra of cosmic X-ray sources

    Get PDF
    X-ray measurements provide the most direct probes of astrophysical environments with temperatures exceeding one million K. Progress in experimental research utilizing dispersive techniques (e.g., Bragg and grating spectroscopy) is considerably slower than that in areas utilizing photometric techniques, because of the relative inefficiency of the former for the weak X-ray signals from celestial sources. As a result, the term "spectroscopy" as applied to X-ray astronomy has traditionally satisfied a much less restrictive definition (in terms of resolving power) than it has in other wavebands. Until quite recently, resolving powers of order unity were perfectly respectable, and still provide (in most cases) the most useful spectroscopic data. In the broadest sense, X-ray photometric measurements are spectroscopic, insofar as they represent samples of the overall electromagnetic continua of celestial objects

    X-ray astronomical spectroscopy

    Get PDF
    The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra

    Accretion disk coronae

    Get PDF
    Recent observations of partial X-ray eclipses from 4U1822-37 have shown that the central X-ray source in this system is diffused by a large Compton-thick accretion disk corona (ADC). Another binary, 4U2129-47, also displays a partial eclipse and contains an ADC. The possible origin of an ADC is discussed and a simple hydrostatic evaporated ADC model is developed which, when applied to 4U1822-37, 4U2129+47 and Cyg X-3, can explain their temporal and spectral properties. The quasi-sinusoidal modulation of all three sources can be reconciled with the partial occultation of the ADC by a bulge at the edge of the accretion disk which is caused by the inflowing material. The height of this bulge is an order of magnitude larger than the hydrostatic disk height and is the result of turbulence in the outer region of the disk. The spectral properties of all three sources can be understood in terms of Compton scattering of the original source spectrum by the ADC. Spectral variations with epoch in Cyg X-3 are probably caused by changes in the optical depth of the corona. A consequence of our model is that any accreting neutron star X-ray source in a semi-detached binary system which is close to its Eddington limit most likely contains an optically thick ADC

    New Prospects in Fixed Target Searches for Dark Forces with the SeaQuest Experiment at Fermilab

    Get PDF
    An intense, 120 GeV proton beam incident on an extremely long, iron target generates enormous numbers of light-mass particles that also decay within that target. If one of these particles decays to a final state with a hidden gauge boson, or if such a particle is produced as a result of the initial collision, then that weakly interacting, hidden-sector particle may traverse the remainder of the target and be detected downstream through its possible decay to an e+e−e^+e^-, μ+μ−\mu^+\mu^-, or π+π−\pi^+\pi^- final state. These conditions can be realized through an extension of the SeaQuest experiment at Fermilab, and in this initial investigation we consider how it can serve as an ultrasensitive probe of hidden vector gauge forces, both Abelian and non-Abelian. A light, weakly coupled hidden sector may well explain the dark matter established through astrophysical observations, and the proposed search can provide tangible evidence for its existence --- or, alternatively, constrain a "sea" of possibilities.Comment: 14 pages, 8 figures; improved sensitivity analysis and cross-checks; small shifts in the expected limits; conclusions unchanged; refs. adde

    Einstein Observatory solid state spectrometer observations of M87 and the Virgo cluster

    Get PDF
    X-ray observations of the galaxy M87 and of a region in the Virgo cluster displaced 7 minutes from the center of M87 are presented. X-ray spectra are obtained at these two locations with the slid state spectrometer onboard the Einstein Observatory. Emission lines were observed in both locations, indicating the presence of heavy elements at abundances approximately solar (to within a factor of 2). A temperature gradient, T increases from approximately 1.4 keV at the position of M87 to T approximately 3.35 keV 7' away, was detected. There is lower temperature thermal emission at the center of M87 with T approximately 0.6 keV, consistent with models for cooling flows in this cluster. In addition to the thermal emission, a power law component in the spectrum of M87, was detected consistent with that observed by HEAO-1, indicating that this component probably originates in the galaxy itself. The presence of intracluster gas having density approximately .001 cu cm and temperature approximately 30 million K is indicated
    • …
    corecore