462 research outputs found

    A Fast Serial Algorithm for the Finite Temperature Quenched Potts Model

    Get PDF
    An efficient serial algorithm for finite temperature, quenched Potts model simulations of domain evolution has been developed. This \u27\u27n‐fold way\u27\u27 algorithm eliminates unsuccessful spin flip attempts a priori by flipping sites with a frequency proportional to their site activity, defined as the sum of the probability of success for every possible spin flip at that site. Finite temperature efficiency for high‐spin degeneracy systems is achieved by utilizing a new, analytical expression for the portion of the site activity due to flips to non-neighbor spin values. Hence, to determine the activity of a site, only flips to the nearest neighbor spin values need be considered individually; all other flips are evaluated in a single expression. A complexity analysis of this algorithm gives the dependence of computing time on system parameters and on simulation progress. While a conventional Potts model algorithm has a constant computing time per simulation timestep, the n-fold way algorithm increases in efficiency as domain coarsening progresses. Computer experiments confirm the complexity analysis results and indicate that the n-fold way algorithm is much more efficient than the conventional algorithm even at high fractions of the critical temperature

    Overview: Computer vision and machine learning for microstructural characterization and analysis

    Full text link
    The characterization and analysis of microstructure is the foundation of microstructural science, connecting the materials structure to its composition, process history, and properties. Microstructural quantification traditionally involves a human deciding a priori what to measure and then devising a purpose-built method for doing so. However, recent advances in data science, including computer vision (CV) and machine learning (ML) offer new approaches to extracting information from microstructural images. This overview surveys CV approaches to numerically encode the visual information contained in a microstructural image, which then provides input to supervised or unsupervised ML algorithms that find associations and trends in the high-dimensional image representation. CV/ML systems for microstructural characterization and analysis span the taxonomy of image analysis tasks, including image classification, semantic segmentation, object detection, and instance segmentation. These tools enable new approaches to microstructural analysis, including the development of new, rich visual metrics and the discovery of processing-microstructure-property relationships.Comment: submitted to Materials and Metallurgical Transactions
    corecore