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Abstract 

 The purpose of microstructural control is to optimize materials properties. To that end, 
we have developed sophisticated and successful computational models of both microstructural 
evolution and mechanical response. However, coupling these models to quantitatively predict the 
properties of a given microstructure poses a challenge. This problem arises because most 
continuum response models, such as finite element, finite volume, or material point methods, do 
not incorporate a real length scale. Thus, two self-similar polycrystals have identical mechanical 
properties regardless of grain size, in conflict with theory and observations. In this project, we 
took a tiered risk approach to incorporate microstructure and its resultant length scales in 
mechanical response simulations. Techniques considered include low-risk, low-benefit methods, 
as well as higher-payoff, higher-risk methods. Methods studied include a constitutive response 
model with a local length-scale parameter, a power-law hardening rate gradient near grain 
boundaries, a local Voce hardening law, and strain-gradient polycrystal plasticity. These 
techniques were validated on a variety of systems for which theoretical analyses and/or 
experimental data exist. The results may be used to generate improved constitutive models that 
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explicitly depend upon microstructure and to provide insight into microstructural deformation 
and failure processes. Furthermore, because mechanical state drives microstructural evolution, a 
strain-enhanced grain growth model was coupled with the mechanical response simulations. The 
coupled model predicts both properties as a function of microstructure and microstructural 
development as a function of processing conditions. 
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1. Introduction: Making the Connection Between Microstructure 
and Mechanics 

A material’s chemical composition and processing history determine its microstructure; in turn, 
microstructure mediates the properties that control materials performance. Over the last two 
decades, mesoscale materials models have coupled chemistry and processing to microstructural 
evolution, and continuum mechanics models have utilized materials properties to predict 
engineering performance and reliability. However, the critical link – between microstructure and 
mechanical properties – has yet to be made. 

Historically, many relationships between microstructural parameters and mechanical response 
have been explored. In general, these response functions are formulated in terms of some mean 
microstructural parameter that is easy to quantify in a metallographic cross-section. For example, 
the Hall-Petch function relates yield strength to mean grain size in metals. 

Recently, computational materials modeling and quantitative metallography have developed to 
the point where microstructure may be characterized in far more detail. Parameters such as 
maximum and minimum feature sizes, feature topology and connectivity, neighbor correlations, 
and full spatial distributions may be obtained in two and three dimensions. Computational 
mechanical engineering has evolved simultaneously to the point that both constitutive models 
and element-based solvers can operate on complex materials systems. The underlying physics of 
elastic deformation and plastic flow are incorporated in constitutive models that include 
crystallography, dislocation motion, and complex hardening. The challenge is to link these 
models to create a predictive response model that includes the effects of microstructural 
complexity. 

One obvious solution is to input a microstructure into a polycrystal plasticity finite element 
model (PPFEM). Such simulations yield a wealth of intriguing and useful data. For example, 
correlations between individual grain size and local stress elucidate mechanisms for damage 
initiation; a model that incorporates only a mean grain size could not capture such relationships. 

However, current implementations of PPFEM have a major drawback, common to continuum 
mechanics models. Macroscopic stress/strain curves generated by PPFEM for two 
polycrystalline microstructures that differ only in average grain size are indistinguishable, which 
disagrees with the Hall-Petch relationship and real-world experiments. The problem is that 
current continuum mechanics models do not include an intrinsic length scale. In such models, 
the only difference between a small grain and a large grain is the number of volume elements in 
the grain. Therefore, given two statistically self-similar microstructures, the coarse-grained 
material is equivalent to a mesh-refined fine-grained material, so fine- and coarse-grained 
materials must behave identically. This problem also affects other length-scale-dependent 
properties, such as shear banding, fracture, and inhomogeneous plastic deformation. Because 
making a direct connection between microstructure and mechanical properties is a critical 
challenge in computational materials modeling, solving this problem is our top priority. 

A number of attempts have been made to incorporate a real length scale in continuum mechanics 
models and simulations. These efforts range from simple (brute force) to esoteric (strain gradient 
with couple stresses); however, all have approached this problem from a continuum mechanics 
perspective and have focused on localization phenomena in the continuum (i.e. shear banding). 
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Materials science issues, particularly the coupling between microstructure and response, have 
never been addressed. Moreover, all of the methods which have been developed are research 
codes; none have been analyzed, documented and validated sufficiently to become a standard 
tool. 

In this project, we take a tiered risk approach to incorporate microstructure and its resultant 
length scales in mechanical response simulations. There are five steps to this approach: (1) 
Identify candidate techniques via literature search, networking, etc. (2) Prioritize methods based 
on risks and potential benefits. (3) Explore chosen methods by implementation and testing. (4) 
Develop the most promising models as research codes for extensive analysis, validation, and 
verification. (5) Deploy successful techniques in Sandia mechanics toolsets. Note that at each 
step, some techniques may be eliminated from further consideration. 

An international workshop was held in April 1999 at Sandia with a goal of performing some of 
the initial identification and prioritization of methods for incorporating a length scale in 
polycrystal plasticity continuum models (PPCM); PPCM includes both PPFEM and the 
microstructural materials point method (MMPM). Using information from our panel of experts, 
we formulated the plan shown in Table I. 

Table I. Prioritized candidate techniques 

Technique Risk Pros Cons Action 

Include length-
scale parameter in 
PPFEM 
constitutive model 

Low Fast, easy, follows continuum 
mechanics paradigm 

Not predictive – hardwires 
the desired result; cannot 
resolve localization 
phenomena 

Rejected as too 
simplistic 

Incorporate grain 
boundary phase in 
MMPM simulation 

Low Phase fraction gives length 
scale; qualitatively reproduces 
localization phenomena 

Not quantitative – 
reproduces 
phenomenology without 
physics 

Not pursued due to 
project staffing change 

Include a hardening 
rate gradient near 
grain boundaries in 
PPFEM 

Low Fast; follows continuum 
mechanics paradigm; gradient 
width sets length scale 

Stress redistribution 
homogenizes load bearing; 
does not reproduce 
experimental observations 

Rejected as physically 
incorrect 

Include a local 
Voce hardening 
model in PPFEM 
(see section 2) 

Medium Voce exponent gives length 
scale; reproduces dislocation 
pileup phenomenology 

Model parameters are 
constitutive, not 
fundamental; requires 
fitting to experimental data 

Selected as a useful 
method for parametric 
studies 

Develop strain-
gradient plasticity 
model for PPFEM 
(see section 3) 

Medium Burgers vector gives intrinsic 
length scale; direct connection 
between microstructural 
features and strain localization 

Large number of physical 
variables have not been 
measured; computationally 
intensive 

Selected as a useful 
method for physics-
based studies 

Implement 
subgrain breakup 
model in PPFEM 

High Surface-to-volume gives 
length scale; incorporates real 
physics for strain localization 

Hard to measure physical 
quantities required as 
input; computationally 
intensive 

Not pursued due to 
project time 
constraints 
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Table I also indicates the action taken for each method under this project. Preliminary tests 
showed that including a length-scale term in the mechanical response constitutive function for 
each PPFEM volume element was fast, easy to implement, and reproduced the desired response. 
In particular, when the flow equation for each element was modified to include a Hall-Petch 
dependence of yield stress on grain size, the polycrystal as a whole displayed a Hall-Petch 
dependence of flow strength on average grain size. However, because this result is essentially 
hardwired in the constitutive model, it is physically unsatisfying. In addition, subgrain 
localization effects, such as hardening near grain boundaries, cannot be resolved by this method, 
as each element within a grain deforms like every other. Therefore, this method was rejected 
from further consideration. 

As an alternative to modifying the PPCM constitutive model, the simulation can be altered to 
include a grain boundary phase that deforms differently from the bulk. If grain boundary width is 
constant, the boundary phase fraction implies a grain size. Our preliminary simulations of this 
type show strain localization near boundaries and length scale dependence. However, there are 
no physics included in this technique, so results are purely qualitative. This method was not 
pursued further due to a project staffing change. 

Since grain size effects in plastic flow are proposed to originate from dislocation pile up near 
grain boundaries, we next devised a model that contains a gradient in power-law hardening rate 
near grain boundaries. The two adjustable parameters are the exponent and width of the 
hardening rate power-law; the width sets the length scale dependence in the model. Elements are 
assigned a hardening rate that depends on their distance from the nearest grain boundary. While 
near-boundary elements initially harden more quickly than interior elements, this preferential 
hardening causes strain to be redistributed to the soft elements. By 0.1% strain, the stress 
distribution has homogenized across the system. No stress localization or Hall-Petch behavior is 
observed. Since these results are in clear contradiction with experiments, this method was 
rejected as physically incorrect. 

Power-law hardening is characterized by continually increasing hardness with strain. However, 
in real materials, hardness saturates due to recovery effects. Therefore, our next step was to 
replace the power-law hardening expression by a saturating Voce-based hardening function. In 
this model, the hardness of an element is related to its distance from the grain boundary taken to 
some exponent. Initially, we used an exponent of –1/2, in agreement with the macroscopic Hall-
Petch exponent; however, this did not reproduce the experimentally observed Hall-Petch or 
stress-strain behavior. Subsequently, we used an exponent of –1, reflecting the boundary surface 
to volume ratio in a polycrystal. After fitting the other constitutive parameters to experimental 
data taken at one grain size, this law reproduced experimental data at many different grain sizes, 
and gave a Hall-Petch exponent very near 0.5. This method is discussed in detail in section 2. 

Due to the success of the Voce hardening model, it was selected for further development in the 
JAS3D finite element code. Periodic boundary conditions were implemented to allow bulk-like 
test samples. Mesh sensitivity was tested for and eliminated. When implemented for a 2D 
randomly textured microstructure using parameters developed for copper, this simulation showed 
several intriguing features. As expected, stress initially concentrates near grain boundaries. As 
strain increases, a clear network of load-bearing grains forms, and the distribution of the average 
stress per grain widens. While the macroscopic stress across each grain appears fairly uniform, 



  9

the microscopic stresses within a grain can vary quite dramatically. That is, stress exhibits 
structure on two length scales: the microstructure scale and the subgrain scale.  

Using the preliminary results of the Voce model simulations, a strain-enhanced microstructural 
evolution model was developed using the Front-Tracking method. Grains are grown for several 
timesteps, and the evolved microstructure is passed back to the PPFEM simulation for re-
equilibration. This model is discussed in section 4. 

Finally, models that resolve microstructural processes within a continuum framework promise 
the highest degree of physical realism. For example, the subgrain breakup model, developed by 
M. Ortiz at CIT, models the flow behavior of dislocation cell microstructures commonly 
observed in metals. All geometrically necessary dislocations are placed in cell walls. As 
deformation proceeds, dislocations are added to the cell walls until interfacial energy favors a 
split to two lower misorientation cell walls. The simple, single crystal implementation of this 
scheme has successfully reproduced the observation that subgrain size decreases with 
deformation. Hall-Petch behavior (as a function of cell size) is also seen. The subgrain breakup 
model includes substantially more physics than other candidate models, but it is the least 
physically developed. While it shows great promise, time constraints prevented investigating it 
during this project. 

The results of a successful model fulfill three critical needs in computational materials science: 
(1) The macro response predicted by the model can be used to generate constitutive models 
which explicitly depend upon microstructure in order to improve traditional continuum 
mechanical response models. This enables the direct linking of microstructure to materials 
properties to system performance. (2) The microscopic structures formed under load answer 
questions about deformation and failure processes as a function of microstructure. For example, 
does the microscopic stress distribution scale with grain size, or does the grain size effect 
overwhelm the structural effect? Are critical levels of local strain achieved before macro strain 
reaches failure level? Is deformation homogeneous or does the material flow along certain paths 
of connected grains? (3) The interdependence of microstructure and mechanics at the grain and 
subgrain level provides new opportunities in process design and control. For example, texture 
predictions can be compared to measurements to elucidate the mechanical state achieved during 
a complex process. Likewise, deformation conditions may be altered to achieve a particular final 
grain size. 



  10

2. Microstructural Length Scale via Grain Boundary Hardening 
Models 

2.1. Polycrystal Plasticity Finite Element Model (PPFEM) 
A microstructure-based model capable of accurately simulating the deformation response of a 
polycrystalline material must not be so cumbersome that when it is implemented into finite 
element code it cannot solve a large scale problem, e.g. 100's of grains and ~100,000 elements, 
in a reasonable time frame, e.g. within a few hours or days. Also, the model must be defined 
such that a unique set of material parameters can be determined and the model results be 
validated from a series of relatively straightforward material deformation experiments. A crystal 
plasticity formulation has been implemented into Sandia National Laboratories JAS3D finite 
element code [1] with the goal of meeting these criteria. The general formulation adequately 
captures aspects of subgrain deformation by modeling local material deformation via the well-
known slip mechanism in a (poly)crystalline material. In an FCC metal, a rate-dependent 
phenomenology has been developed which partitions plastic deformation amongst the 
crystallographic 〈111〉{110} slip systems defined within a single crystal. [2] Literature examples 
abound with FCC crystal plasticity formulations incorporated into finite element code, allowing 
researchers to mesh assemblages of crystals which more closely approximate the microstructural 
deformation response of a polycrystalline material.  

A finite element implementation of a polycrystal plasticity model has the great advantage of 
allowing the finite element method to enforce compatibility and equilibrium between and within 
grains. Local intra- and intergranular response of grains within a simulated polycrystal are driven 
by geometric constraints imposed by neighboring grains with different orientations. Lattice 
rotation and material strength within each element is tracked, thus a finite element polycrystal 
plasticity simulation composed of several hundred elements per grain provides access to a large 
amount of local simulated microstructural information, e.g. [3-5]. Examples of simulated results 
using the JAS3D implementation of the polycrystal plasticity model are illustrated in figure 2.1. 
These examples include 3-D and paved 2-D finite element meshes composed of 200 randomly 
oriented grains, each grain typically containing several hundred elements, designed to look like a 
realistic microstructure subjected to boundary conditions periodic on all faces and meant to 
simulate a tensile test. By correctly choosing the parameters in the work-hardening portion of the 
model, the simulated polycrystalline response fits the experimental tensile response of a copper 
polycrystal well, as shown in figure 2.1(a). Large von Mises stress variations, predicted within 
both the 2-D and 3-D models are generated by the variable constraints imposed by grain 
neighbors with different crystallographic orientations, as illustrated in figure 2.1(b). These local 
stress variations have never been experimentally validated. 

This quasi-continuum based phenomenology does not track the motion or evolution of discrete 
microstructural features such as dislocations or subgrain boundaries, thus it inherently lacks a 
length scale. Recently, formulations that capture the effect of strain gradients have been 
incorporated into the crystal plasticity framework [6-9] to capture non-local influences, thus 
capturing size scale effects, on the deformation response of single crystals and polycrystals. 
These models are complex and currently perform poorly in large scale finite element simulations. 
In this report, the basis for a non-local model similar in certain aspects to the strain gradient 
models developed by these previous researchers is developed, but in a much simpler, heuristic 
form more amenable to large-scale simulation.  
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2.2. Kinematic Framework  
A brief discussion of the model may begin with describing distortion of a continuum using the 
velocity gradient, which can be additively decomposed into symmetric and skew-symmetric 
parts: 

 L = Ω + D  (2.1) 

where, D is the symmetric deformation rate tensor and Ω is the skew-symmetric spin rate tensor. 
Distortion of single crystals has been described as a combination of plastic flow due to 
crystallographic slip and lattice distortion. Lattice distortion includes elastic distortion and rigid 
body rotation of the crystal lattice. Thus, for single crystals the deformation rate, D, and spin 
rate, Ω, can be further decomposed into lattice and plastic parts as follows: 

 D = Dl + D p  (2.2a) 

 Ω = Ωl + Ωp  (2.2b) 

where, Dl represents the lattice deformation rate, and Dp represents the plastic deformation rate 
due to crystallographic slip. Ωl represents the lattice spin rate and Ωp represents the plastic spin 
rate. The plastic deformation rate and spin rate depend on the slip rates, sγ&  , for the active slip 
systems, 

 s

12

1s
sp PD ∑

=

γ= &  (2.3) 

 s

12

1s
sp W∑

=

= γ&Ω  (2.4) 

Ps and Ws are the symmetric and skew-symmetric parts of the dyad which is formed from the 
lattice vectors for each slip system, defined as: 

 
Ps =

1

2
(

ds ⊗ ns  + ns ⊗ ds ) (2.5)  

 
Ws =

1

2
(

ds ⊗ ns  - ns ⊗ ds ) (2.6) 

where, ds represents a unit vector oriented in the slip direction for slip system s and ns represents 
a unit vector normal to the slip plane for slip system s. 

This model uses a constitutive relation originally given by Asaro and Rice [10,11] based on the 
assumption that the elastic lattice properties are unaffected by slip: 

 ll =)tr( DED : σσ +
∇

l  (2.7) 
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where, σ is the Cauchy stress, )tr( lD  represents the trace of Dl, and E is the fourth order 

elasticity tensor. *l
∇
σ  is the co-rotational stress rate formed on axes which spin with the crystal 

lattice, defined as: 

 lll ΩΩ ⋅⋅−=
∇

σ−σ  σσ &  (2.8a) 

Asaro and Rice also express the constitutive relation in terms of the co-rotational stress rate 
formed on axes which spin with a material element: 

 )γ−+
∇

&'PDED (:=)tr( l σσ   (2.8b) 

where 

  )(:1 WWEPP' ⋅−⋅+= − σσ  (2.8c) 

Lattice vectors which characterize the slip systems are affected by lattice distortion. A variety of 
assumptions can be made concerning the evolution of the crystal lattice vectors. In this version of 
the kinetic formulation, the crystal lattice vectors are assumed to remain orthogonal unit vectors 
that simply rotate at the lattice spin rate. 

 sls dd ⋅= Ω&   (2.9a) 

 snn ⋅= ls Ω&  (2.9b) 

To complete the constitutive model, equations for the slip rates, Ý γ s, are needed. For the current 
implementation, a slip rate with a power-law dependence on the resolved shear stress as 
originally suggested by [12] was used. 

 
Ý γ s
Ý γ 0

=
τ s
κs

τ s
κs

(1/m−1)

 (2.10) 

where, Ý γ 0 is the reference slip rate, m is the rate sensitivity factor, τs  is the resolved shear stress 

on slip system s, and sκ  is an internal state variable which accounts for the hardening on slip 

system s. The initial value of sκ  on each slip system corresponds to the critical resolved shear 
stress on that system, i.e. the stress necessary on slip system s to activate slip in the rate 
insensitive limit. In the rate dependent model, it is sometimes referred to as the reference shear 
stress. The resolved shear stress, τs , for slip system s generated by an applied Cauchy stress, σ, 
can be obtained using Schmid’s equation: 

 τs = Ps : σ  (2.11) 

2.3. Hardening Model 
Material hardening is captured at the slip system level by evolving the κs term in equation (2.10). 
For this study, all slip systems harden at the same rate based on an integral form of the hardening 
saturation law originally proposed by Voce [13-15], given by  
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 σs = σ0 + (σsat −σ0) 1− exp(−
θ

σsat −σ0
εpl)

 

 
 

 

 
  (2.12)  

where, κ0 is equivalent to σ0, an offset or yield stress, κsat is equivalent to σsat, the saturation stress, 
and θ governs the rate of work hardening. The integral Voce law was chosen because it better 
captures the saturation hardening response of polycrystalline FCC metals at high strains and 
because it is more amenable to adjustment for the length scale modeling.  

As stated, this model allows all slip systems to harden equally. Previously developed slip system 
hardening models that harden slip systems equally invariably evolve material hardening using 
total shear accumulated on all of the slip systems as an evolution parameter, i.e. the algebraic 
sum of shears ∑γ

s

 [3, 8, 16], an assumption with substantial validity since the algebraic sum of 

shears has significance beyond a relative measure of accumulated strain through its relationship 
to the Taylor factor [17]. (The Taylor factor is a parameter originally defined to relate slip 
system strength to the overall strength of a polycrystal.) In this model, the Taylor factor is used 
to bridge between the curve fit response parameters given in figure 2.1 and the slip system 
hardening response used in a simulation. Hardening is evolved through equivalent plastic strain 
rather than the algebraic sum of shears because it is straightforward to relate equivalent plastic 
strain in a material element to plastic strain derived from experimental data.  

By using parameters for σ0, σsat, and θ determined from the fit in figure 2.1, and dividing the 
incremental work hardening response by the Taylor factor, a slip system hardening model is 
obtained directly from a stress-strain curve. Figure 2.1 illustrates an extremely favorable 
comparison between the simulated tensile hardening response of a randomly textured polycrystal 
composed of 200 grains using this slip system hardening model derived through this curve fit 
method.  

2.4. Polycrystal Plasticity Simulation with No Length Scale  
Element paving along smooth grain boundaries allows mesh refinement across a wide range of 
mesh densities, however, paving is not possible with quadrihedral 3-D meshing. Thus, 1 element 
thick paved meshes generated at different degrees of refinement within the same polycrystal 
microstructure are used for most of the comparisons in this report. Each simulation was 
subjected to periodic boundary conditions on all faces of these simulations. In all other aspects, 
the deformation boundary conditions were meant to replicate a tension test and therefore were 
the same as those used in the simulation illustrated in figure 2.1, results are given in figures 2.2 
and 2.3. The total number of elements in the three simulations given in figure 2.2 are 8792 
elements, "the coarse mesh", 33771 elements, "the medium mesh" and 118507 elements, "the 
fine mesh". Figure 2.2 clearly shows that predicted local von Mises stress distributions within 
grains is mesh insensitive across this wide range of mesh refinement. 

To track deformation evolution of the microstructure, the model kinematic framework, which 
tracks crystal lattice rotation of each finite element within a simulation, is utilized. Prior to 
imparting deformation in a simulation, each element within a grain is initialized to the same 
crystal lattice orientation. As deformation initiates and progresses, the crystal lattice rotates 
within each finite element as determined by the lattice spin rate, Ωl [defined in equation (2.2b)]. 
This rotation can be defined by a lattice rotation matrix with three independent variables, or a 
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rotation about a normalized axis –often referred to as an axis-angle pair. Figure 2.2 includes plots 
of the evolved deformation as a function of the rotation angle, henceforth referred to as the 
lattice misorientation, extracted from the axis-angle pair description of the crystal lattice rotation 
after 10% tensile strain. Similar to the von Mises stress distributions, during deformation rotation 
gradients emerge within grains and are mesh insensitive across the investigated range of mesh 
densities. Accordingly, misorientation between adjacent elements within pre-defined grains after 
a prescribed amount of deformation is highly mesh sensitive, i.e. more elements per grain results 
in smaller misorientations between each element. The explanation for this mesh insensitivity is 
straightforward. The simulation framework does not define an element size, a grain size or an 
element size to grain size ratio, or more generally, the model does not define a microstructural 
length scale.  

2.5. Incorporating a Length Scale to capture Grain Boundary Strengthening 
in Polycrystal Plasticity Simulations 

Mechanical strengthening of a polycrystal by grain boundaries is a well-known phenomena and 
is generally defined by the Hall-Petch relationship [18]: 

 σ = σ0 + kd-1/2 (2.14) 

where σ is the strength of the polycrystal, σ0 is an offset stress affiliated with the strength of the 
material with no grain boundaries, k is a constant and d is the average grain diameter of the 
polycrystal. Results in the previous section demonstrated that refining the mesh changes the 
element size to grain size ratio, but in a simulation with no length scale, grain boundary 
strengthening and its effects on local stress and microstructure deformation evolution cannot be 
captured. Also, the basic kinematics of polycrystal plasticity models do not readily provide a 
method to capture grain boundary strengthening, a fundamental and well-established 
strengthening mechanism in polycrystalline materials, raising questions regarding the validity of 
the subgrain stress and deformation predictions of these models. The goal of this part of the 
study was to incorporate a length scale into the model framework and generate results on finite 
element meshes comparable to the "no length scale" simulations used to generate the results 
given in figures 2.1 and 2.2, thus addressing questions about the role of length scale in 
polycrystal plasticity modeling.  

An example of Hall-Petch strengthening in an FCC metal is given in figure 2.4, a series of tensile 
test stress-strain curves taken from polycrystalline copper samples with different grain sizes. 
These curves show that the Hall-Petch effect offsets the yield stress due to grain boundary-
dislocation interactions, but does not change the work hardening response of a copper 
polycrystal. Dislocation motion is regarded as the prime source of low homologous temperature 
plastic deformation accommodation, therefore dislocation-grain boundary interactions at micro-
plastic strain levels serve to locally strengthen material near grain boundaries. [19] Thus, a 
plausible approach to including the effect of grain boundaries in a polycrystal plasticity 
simulation is to incorporate a phenomenology which preferentially strengthens material near 
grain boundaries at the onset of plastic deformation.  

The experimental stress-strain data shows an offset yield stress and nearly identical work 
hardening behavior for a typical polycrystalline material with different average grain sizes. To 
capture this in the polycrystal plasticity simulation, material strength is initialized at higher 
values based on the distance of a material element from the nearest grain boundary. Within the 
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model implemented for this project, it is evolved by modifying the Voce formulation originally 
given in equation (2.12).  

 σs = σ0 +  
k

dn
 

 

 
 

 

 
 + ∆ 1− exp(−

θ
∆

εpl)
 
 
 

 
 
  (2.15a) 

 ∆ = σsat −σ0  (2.15b) 

where, k and n are constants with meaning comparable to that in the Hall-Petch equation (2.14), 
d is distance from the nearest grain boundary, and all other variables defined as they were in the 
original model equation (2.12).  

 In a fashion similar to fitting the slip system work hardening response to a single stress-strain 
curve discussed in the previous section, equation (2.15) could be fit to a series of stress-strain 
curves obtained from a polycrystalline material with several different grain sizes. This was not 
done for the simulations in this report because a straightforward bridging between polycrystalline 
response and slip system response could not be performed using the Taylor factor. Through 
empirical fitting, the follow constants were used: θ=580, ∆=310, k=35, κ0= 3 MPa and series of 
simulations were run with n=1/2 and n=1. The finite element mesh used in these simulations was 
the same as used for the "coarse grained" simulations used in figure 2.2. The resulting simulated 
polycrystalline tensile stress-strain response for the same grain sizes listed in figure 2.4 is given 
in figure 2.5. The figure shows that increasing the exponent n, increases the dependence of grain 
size on the yield strength of the polycrystal. As intended, the work hardening response of the 
simulated stress strain curves is not influenced by the grain size, following the same trend 
observed in the experimental data presented in figure 2.4.  

The role of the exponent n in equation (2.15) on local slip system strength in the near grain 
boundary region of a polycrystal, is shown in figure 2.6. The boundary influence extends further 
into the grain as the value of n is increased. Clearly, increasing n increases the role of grain 
boundaries in the deformation response of the polycrystal and forces the increased dependence of 
grain size on the yield strength of the polycrystal. Figure 2.6 also illustrates a few weaknesses in 
the model, Each curve crosses at d =1 µm indicating an unwanted normalization in this model 
and vanishingly thin grain boundaries that have an infinite strength; thus grain boundaries 
represent singularities in the finite element simulations. By plotting yield strength vs. grain size 
for the experimental data, the simulated data with n=1/2 and the simulated data with n=1 (yield 
strength was measured using a 0.02 offset criterion on the simulated curves) the plot given in 
figure 2.7 was obtained. The slope of these curves gives the Hall-Petch exponent, accepted as 0.5 
in the Hall-Petch relationship given in equation (2.14), for each series of polycrystals. Table I 
lists the measured Hall-Petch exponent obtained from the experimental data and both sets of 
simulations. The simulations which used n=1 gave a Hall-Petch exponent of 0.482, very close to 
the accepted value of 0.5 and to the measured value of 0.577 for the tensile stress-strain data 
measured from copper polycrystals.  

Empirically, the polycrystal plasticity model with the added grain boundary length scale 
accurately replicated the stress-strain response of copper polycrystals with different average 
grain sizes when n=1. However, representing the grain boundaries as vanishingly thin 
discontinuities with infinite strengths creates a mesh sensitivity problem which cannot be 
overlooked.  
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Slip system strength distribution plots, illustrated in figure 2.8 show that as overall applied stress 
is increased differences in stress distribution between simulations with different grain sizes 
diminish. This observation corresponds with marching up the stress-strain curves, as the material 
work hardens the influence of grain boundary strengthening becomes a smaller percentage of the 
overall material strength. Similar behavior is seen in orientation space, as shown in figure 2.9. 

2.6. A Mesh Independent Offset Model 
To overcome mesh sensitivity caused by vanishingly thin and infinitely strong grain boundaries, 
an additional length scale was added to the model. The length scale gave grain boundaries a 
finite thickness and strength and amounted to a straightforward modification of equation (2.15): 

 σs = σ0 +  
k

max δ,d( )n
 

 

 
 
 

 

 
 
 + ∆ 1− exp(−

θ
∆

εpl)
 
 
 

 
 
   (2.16) 

where, δ is the new length scale which has the effect of capping the original grain boundary 
strengthening law, depicted in figure 2.10, such that the grain boundary has a finite strength. The 
value of δ corresponds to a grain boundary thickness. The indicator "max" takes the maximum 
value of δ or d, distance from the center of the nearest grain boundary. For the simulated results 
presented in this section, δ was set to 0.030 µm, which approximates grain sizes which Hall-
Petch breakdown is observed in mechanical properties studies of nanocrystalline FCC metals 
[20-22]. All other parameters remained the same as used for the simulations in the previous 
section: κ0=6.21 MPa, k=35, n=1, θ=580 and ∆=31. This new model is referred to as the "offset" 
model when compared to the "original" model presented in the previous section. 

 Figure 2.11(a) compares the simulated tensile stress-strain response of the 30 grain 
polycrystal with an average grain size of 15 µm using the original and offset grain boundary 
strengthening models. The offset model gives a slightly softer work hardening response, a 
consequence of capping the strength of the grain boundaries. Material very near or within the 
grain boundaries in the offset simulations is slightly softer than in the original simulations. 
Figure 2.11(b) illustrates that mesh independence can be achieved using the offset model. This 
figure shows a virtually indistinguishable tensile stress-strain response of a polycrystalline 
simulation with an average grain size of 1 µm using the "coarse", "medium" and "fine" meshes 
previously defined in figure 2.2. With mesh dependence eliminated, subsequent offset model 
simulations presented in this section use the "coarse" mesh. 

 Focusing on the importance of capturing Hall-Petch breakdown and nanocrystalline 
materials, the offset model was exercised at grain sizes between 0.01 - 1 µm. The simulated 
tensile stress-strain response of identical polycrystals spanning this grain size range is given in 
figure 2.12(a). The corresponding yield strength vs. grain size plot is given in figure 2.12(b). 
Both parts of figure 2.12 indicate a saturated strengthening response as the grain size approaches 
and drops below the value set for the δ parameter. Before saturation, the slope of the curve in the 
yield stress vs. grain size plot gives a Hall-Petch exponent, n = 0.735, slightly higher than the 
accepted value of 0.5 for polycrystalline FCC metals and also higher than the n = 0.482 value 
obtained from the original model results given in the previous section. The original model results 
were mesh sensitive suggesting that if this modified offset model offers a better 
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phenomenological approximation of true polycrystalline behavior, the constants κ0, k, n in the 
local grain boundary strengthening model require a slight adjustment. 

 Figures 2.13 and 2.14 compare spatially resolved slip system strength and misorientation 
distribution in identical polycrystals with a 15 µm grain size using both original and offset 
models. The overall strength distribution is very similar between both models, but slightly higher 
in the original model, presumably because the grain boundaries have higher (infinite) strength in 
the original model. Figure 2.14 shows that the crystallographic misorientation distribution is very 
different when comparing both models. The offset model is a fairly minor modification of the 
original model, thus the significant difference in misorientation distribution between both models 
suggest that deformation evolution of microstructure is an unstable process. Also, evidence of 
deformation induced substructure not present in any of the previous results begins to appear 
within a few grains in the offset model. One example of deformation induced substructure 
showing bands of misorientation within a grain after 40% deformation is shown in figure 2.14.  

 Figures 2.15 through 2.17 illustrate the slip system strength distribution and spatially 
resolved misorientation of selected results based on grain size, ranging from 0.01 – 1 µm, using 
the offset model. Figure 2.15 illustrates that at grain sizes smaller than δ, i.e. 0.01 and 0.02 µm 
grain sizes, the spatial distribution of slip system strength does not vary and the spatial 
distribution of crystallographic misorientation is identical. At all locations in these simulations, 
material resides within a grain boundary because the grain size is less that the prescribe grain 
boundaries thickness, and slip system strength is initialized to the grain boundary value of 1173 
MPa. These ultra-fine grained materials are initialized at near saturation as governed by equation 
(2.16) at all locations in the simulations, thus there is little opportunity for work hardening. The 
stress-strain curves given in figure 2.12 show the expected response for the small grain sizes, by 
illustrating a high yield strength and little work hardening before the onset of necking. There is 
no fracture criterion in the finite element model, thus the periodic boundary conditions imposed 
on the simulations enforce a stable diffuse neck.  

 Figures 2.16 and 2.17 show the spatially resolved slip system strength and 
crystallographic misorientation distribution in simulations with average grain sizes of 0.1 µm, 
0.5 µm and 1 µm at strains of 0.1 and 0.4. Figure 2.16 illustrates that slip system strength varies 
widely across the different grain sizes and varies widely from the grain boundary to center of a 
grain. Obviously, the influence of a grain boundary extends further into a grain as the grain size 
is reduced. As opposed to the relatively uninformative result presented in figure 2.16, figure 2.17 
illustrates several examples of deformation-induced substructure which resembles 
experimentally observed deformation bands and cell-blocks commonly observed in deformed 
polycrystals. Size scale plays a role in these results, as best illustrated by considering the largest 
grain in each of the three simulations. As the grain size increases the number of bands which 
form within a grain is increased as well. This observation of predicted substructure evolution is 
unique to this implementation of polycrystal plasticity modeling.  
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2.8. Figures for Section 2 
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3. Modified Strain Gradient Plasticity Model 
There are many ways of introducing length scales into plasticity modeling. In recent years 
considerable effort has been devoted to the development of continuum strain gradient models 
(e.g. Fleck and Hutchinson [2, 3]), dislocation dynamics and discrete dislocation models (e.g. 
Needleman [4, 5], Schwarz [6, 7], and Kubin [8, 9]) which are based on direct calculation of 
interactions of multiple dislocations, and embedded models that incorporate atomistics [10, 11] 
or discrete dislocation simulations [12, 13] into a higher order computational framework like 
FEM. Less attention has been paid to the truly non-local models, which allow the state of the 
continuum in one region of the system depend on that in other regions [14]. The goal of all these 
models is to predict phenomena that depend on the size of microstructural features, e.g. as 
described by the Hall-Petch effect wherein the yield strength increases with decreasing grain size 
as 

 σ y  =  σ 0 +  Kd−1/ 2 (3.1) 

where yσ  denotes the yield stress and d is a grain diameter [1]. 

Strain gradient methods require additional, higher-order balance equations and cannot be 
incorporated into the framework of the current code. Dislocation dynamics and discrete 
dislocation methods, as well as the embedded methods, are either mesoscopic or atomistic and, 
thus, cannot be directly integrated into a continuum framework. The most promising approach, 
therefore, is the non-local approach. For the present purpose, we focus on the non-local Taylor-
based model introduced by Gao and Huang [15]. 

The model is based on two fundamental precepts. First is the generalized Taylor relation [16], 

 GSb ρραµτ +=  (3.2) 

where τ is the flow stress, µ denotes the shear modulus, b is the Burgers vector, ρSis the density 
of statistically stored dislocations, ρG  is the density of geometrically necessary dislocations, and 
α is an empirical constant typically of order one. Geometrically necessary dislocations are the 
ones that are needed to accommodate strain incompatibilities and are, as has been long 
established, related to strain gradients [3]. Statistically stored dislocations are generally thought 
to be related to plastic strains. Second is the observation that strain gradients can be 
approximated as integrals of strain fields over infinitesimally small volumes. This development 
is rather significant because the connection of dislocation densities and strain gradients is well 
established. With the Gao and Huang approximation, this connection can be generalized to an 
integral (non-local) formulation. 

It is worth noting here that Gao’s and Huang’s integrals are not truly non-local because they are 
valid in infinitesimally small volumes only and diverge with increasing volume. This 
formulation is not ideal for numerical calculations, especially since our goal is to modify an 
existing code in the specific FEM framework of JAS3D. Therefore, we have modified Gao’s and 
Huang’s integrals, writing them as integrals over the whole volume of a deforming body and 
introducing exponentials that depend on length scale parameters so that these integrals 
asymptotically converge to Gao and Huang’s integrals when the length-scale goes to zero. Thus, 
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while Gao’s and Huang’s approximation to the k gradient of the ij component of a tensor field ε 
at position x is 

 εij ,k (x) =
εij (x + α) −εij (x)( )Vcell

∫  αmdV 

αmαkdVVcell
∫

 (3.3) 

ours is 

 εij ,k (x) =
εij (x + α) −εij (x)( )Vtot

∫  αme−C α1 + α2 + α3( )dV 

αmαke
−C α1 +α2 + α3( )dVVtot

∫
 (3.4) 

where Vcell is the volume of a region surrounding the position x, Vtot is the volume of the entire 
system, α is a displacement vector from x, and the constant C in the exponential serves as a cut-
off distance analogous to that for an interatomic potential, but with finite elements instead of 
atoms. This latter constant eliminates the need to integrate over the entire system volume in 
practice. Our analyses (for one dimension) established that this approximation is quite good for 
fields that are changing slower than x4. 

The density of geometrically necessary dislocations can be related to an effective strain gradient 
η  as 

 
bG
ηρ 2

=  (3.5) 

while the density of statistically stored dislocations is determined by the effective plastic strain 
only. This leads to a law of strain gradient plasticity like 

 ( ) ηεσσ lfref += 2  (3.6) 

where refσ  is a constant, f ε( ) is a function of the form 

 f ε( )=
3αµb ρS

σ ref
, 

and l is a length-scale parameter that ensures that the coefficient relating the effective strain 
gradient η  has a dimension of length [16, 15]. Thus, our formulation has two length scales: the 
cut-off distance C, and the length parameter l.  

This model can be implemented as is, but it is incomplete in one important sense. Consider, for 
instance, equation (3.5) relating the density of geometrically necessary dislocations to the 
effective strain gradient. If in the process of deformation the effective strain gradient decreases, 
the density of geometrically necessary dislocations has to go down according to equation (3.5) 
because fewer dislocations are needed to accommodate the incompatibility of strain. But 
dislocations cannot physically disappear just because the applied stress is lifted (and we have not 
considered processes like recovery here). Physically, it makes more sense to say that 
geometrically necessary dislocations that are no longer needed to accommodate strain can 
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become mobile, but they must remain in the system and interact with other dislocations. Some 
could be annihilated in those interactions, but many will remain and contribute to hardening. In 
the same manner, the density of statistically stored dislocations cannot be just a function of 
accumulated plastic strain. After all, even an unstressed material can (and generally does) have 
statistically stored dislocations in it. This means that we have to consider evolution of different 
dislocation populations with relation to applied stress to keep track of how many dislocations 
really are in the system.  

The evolution equations for dislocation densities are readily available. These models were 
developed to study dislocation patterning and plastic instabilities in metals. The best known of 
these models is due to Walgraef and Aifantis [17, 18, 19] who used reaction and diffusion 
equations to describe dislocation interactions. A similar model was developed by Ananthakrishna 
[20]. 

Walgraef and Aifantis developed [18] spatially dependent dislocation evolution equations of 
reaction-diffusion type to describe the formation of persistent slip bands (PSB) in metallic 
materials under cyclic loading. Based on the continuum theory of dislocations, a balance 
equation like 

 ∂tρ + div j = ˆ c  (3.7) 

where j is the dislocation flux and ˆ c  represents the production or annihilation of dislocations, 
forms the basis for the evolution equations. The flux could be determined from a momentum 
balance or constitutive equation. Considering two different types of dislocations, mobile and 
immobile, non-linear partial differential equations were derived that described the dominant 
mechanisms for PSB formation, and these PDE’s have the form 

 ∂tρI = g(ρI ) − bρI + ρM ρI
2 + DI ∆ρI  (3.8) 

and 

 ∂tρM = bρI − ρM ρI
2 + DM ∆ρM  (3.9) 

where the subscripts M and I denote mobile and immobile respectively, ρ is dislocation density, 
and D is diffusivity. 

The generation of immobile dislocations is described by the function g(ρI). A corresponding 
generation term does not appear in the mobile dislocation equation because it is assumed for 
PSB’s that all newly generated dislocations will be immediately pinned. The pinning, or 
immobilization, of mobile dislocations leads to a decrease in the mobile dislocation density at a 
rate of -ρMρI

2 and a corresponding increase in the immobile dislocation density at a rate of ρMρI

2. 
Similarly, immobile dislocations break free as a result of stress at a rate bρI causing the 
population of the immobile dislocations to decrease at a rate - bρI and the population of the 
mobile dislocations to increase at the same rate. The dislocation motion due to diffusion 
introduces spatially dependent flux terms, DI∆ρI and DM∆ρM. 

Ananthakrishna [20] also developed a set of spatially dependent dislocation evolution equations, 
taking into account different dislocation types and different dislocation interactions. Rather than 
considering two dislocation types, he divided the dislocation population into three types: mobile, 



  40

immobile, and those with a cloud of solute atoms. Ananthakrishna also based the dislocation 
evolution equations on the continuity equation but rather than consider flux directly he 
considered dislocation density and velocity, v, as 

 ∂tρ + ∂i(ρ vi ) = ˆ c  (3.10) 

From this, and a set of dislocation reactions [20], the following set of dislocation evolution 
equations were derived: 

 
∂ρm

∂t
+

∂
∂xi

ρmvm( )= θvmρm − ′ µ ρm
2 − µρmρim + λρim − βρm  (3.11) 

 
∂ρim

∂t
+

∂
∂xi

ρimvim( )= k ′ µ ρm
2 − µρmρim − λρim + ′ β ρi  (3.12) 

 
∂ρi

∂t
+

∂
∂xi

ρivi( )= βρm − ′ β ρi  (3.13) 

where the subscripts m, im, and i denote mobile, immobile, and solute-clouded dislocations; and 
θ, µ, λ, β, and k are constants. 

Either of these models can be incorporated into our non-local model. Both have length scales, 
and are therefore able to reproduce dislocation structures. A combined model for dislocation-
mediated deformation and dislocation density evolution would possess multiple length scales, 
making it more realistic. In such a combined approach, geometrically necessary dislocation 
densities and strain-related statistically stored dislocation densities will determine the production 
terms of the evolution equations.  

Consider, for instance, the Walgraef-Aifantis model. If the effective strain gradient decreases, 
some of the (previously produced) geometrically necessary dislocations will become mobile. 
This will modify terms in equation (3.9), since the assumption that all newly produced 
dislocations are pinned is superfluous in the combined model. An increase in the value of the 
effective strain gradient, on the other hand, will produce additional geometrically necessary, i.e. 
immobile, dislocations, determining, together with the plastic strain production, the immobile 
dislocation production term g(ρI) in equation (3.8). The Ananthakrishna model can be combined 
with the non-local plasticity model in the same manner.  

At present, we have implemented into JAS3D the very basics of a non-local model that describes 
the dependence of ρG on the approximated strain gradient, as described above. While the 
preceding discussion presents in some detail how this basic model for geometrically necessary 
dislocations could be made more complete and realistic by adding dislocation evolution 
equations, it is difficult to determine a priori which of the two evolution models will be better for 
our purposes. (Still, the Walgraef-Aifantis model seems preferable because it appears to have 
fewer assumptions.) Nonetheless, we feel that the incorporation of dislocation density evolution 
equations into the framework of crystal plasticity will greatly improve the fidelity of the existing 
models, particularly in predicting microstructure size effects and dislocation patterning. 
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4. Coupled Simulations of Deformation and Grain Growth 

4.1. Interdependence of Mechanics and Microstructure 
Thermomechanical processing is very common in a wide variety of manufacturing technologies. 
In particular, metal forming often involves significant deformation, and this is commonly either 
performed at elevated temperatures or followed by heat treatment. Deformation can have a 
substantial effect on material properties, as can microstructural modification of a deformed 
metal. Therefore, it is important to understand how a material’s microstructure, and its evolution, 
affect mechanical response and vice versa. 

In this section, front tracking is used to simulate grain growth in an idealized isotropic 
polycrystal. Deformation is simulated at various stages of grain growth using the finite element 
method (FEM) with material properties for Cu. The FEM formalism includes anisotropic linear 
elasticity, crystal plasticity, and isotropic power-law hardening. This coupling between 
microstructural evolution and deformation, though incomplete, provides valuable insights into 
the effects of microstructural changes on mechanical response. 

4.2. Simulation Methods for Coupling Grain Growth and Deformation 

4.2.1. Front tracking model for grain growth 
Grain growth is energetically advantageous because it reduces the total grain boundary area. The 
velocity, v, of a moving grain boundary is proportional to the pressure, P, driving its motion [1], 
such that 

 v = MP (4.1) 

where M is the boundary’s mobility. The driving pressure always acts normal to the boundary. In 
a pure, defect-free polycrystal, boundary motion is driven by the curvature of the grain 
boundaries, and the driving pressure is Pκ = γκ, where γ is the grain boundary energy per unit 
area (or length in two dimensions) and κ is its curvature. The curvature pressure acts toward the 
center of curvature. 

In a stressed, elastically anisotropic material where the elastic energy changes across a grain 
boundary, the total elastic energy in the material will change (even without stress redistribution) 
as the grain boundary moves. Therefore, stored elastic energy can drive boundary migration in a 
stressed, elastically anisotropic material, and the driving pressure is simply the difference in 
stored elastic energy density across the boundary, Pe = ∆He, where [2] 

 eσε
2
1

=eH  (4.2) 

and σ and εe are the stress and elastic strain tensors, respectively. 

In a plastically deformed material, the motion of a grain boundary can remove dislocations from 
its wake. Assuming that all defects are removed from the material when a boundary passes 
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through it, the plastic driving pressure is simply the stored plastic energy density ahead of the 
moving boundary, Pp = Hp, where [2] 

 ( )
G

H io
p 2

2

2α
ττ −

=  (4.3) 

α is a constant, and G is the shear modulus equal to C44 (see Table I). 

The elastic and plastic pressures act toward the grain with higher stored energy. Thus, in an 
elastic-plastically deformed material with curved grain boundaries, assuming all driving 
pressures operate with a common mobility, the grain boundary velocity is 

 v = M(Pk + Pe + Pp) (4.4) 

Although the present grain growth simulations do not include the effects of deformation, 
incorporating these effects is a goal of this work, and the elastic and plastic driving forces will be 
examined here using the deformation results. 

To apply this model to a practical simulation of grain growth [1], a topologically realistic, two-
dimensional grain structure is created in the computer by representing the grain boundaries as 
curved line segments that terminate at the triple junctions. In practice, this grain structure is 
mapped from a Monte Carlo Potts [3] result. The boundary line segments are discretized by 
uniformly distributing points along them. The curvatures at each point are calculated by fitting a 
circle to the point of interest and its two nearest neighbor points on the same boundary, and 
taking the curvature to be the inverse of the circle’s radius, κ = 1/r. The velocity of each point 
can then be calculated using equation (4.1), with the driving pressure set to Pκ. A time step, ∆t, is 
chosen such that ∆t = ∆xmax/vmax, where ∆xmax is a predetermined maximum allowable point 
displacement. Each point is moved by a distance ∆x = v∆t toward the center of the fitted circle 
(see above), and the entire procedure is repeated. 

4.2.2. Polycrystal plasticity model for deformation 
The front tracking simulations provide grain microstructures at various stages of evolution. The 
grain boundaries are represented by points that connect the triple junctions. To model the 
deformation of these microstructures, the grain boundary points are used as a nodal framework to 
create a finite element mesh. The regions between the boundary points, i.e. the grain interiors, 
are paved with quadrilateral elements using Sandia’s FASTQ mesh generation code. The 
resulting two-dimensional mesh is duplicated and offset to produce a three-dimensional mesh of 
hexahedra that is one element thick. Each grain is assigned an individual crystallographic 
orientation from a random distribution. 

The deformation model follows the standard kinematic framework [4, 5] from an anisotropic 
elastic and isotropic plastic material. In addition, the slip rate, γ& , on each slip system is defined 
as [6] 

 
11

−

=
m
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o τ

τ
τ
τγγ &&  (4.5) 
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where oγ&  is a reference slip rate, τ is the resolved shear stress on the slip system, τo is the critical 
resolved shear stress, and m is the rate sensitivity factor. The critical resolved shear stress 
evolves according to the isotropic hardening law 

 τo = τi + Aεp

n (4.6) 

where τi is the initial (unhardened) value and εp is the equivalent plastic strain. A and n are 
constants. The values of all elastic and plastic material constants used in the deformation model 
are provided in Table I. 

The deformation of the polycrystal is simulated using Sandia’s JAS3D code, which is a quasi-
static nonlinear conjugate gradient finite element solver. Periodic boundary conditions are 
imposed in all directions, and the mesh is deformed by 1% in the y-direction (“up/down” in the 
figures shown here) and held there. 

Table I. Material constants for Cu. Cij are elastic constants, and the remaining symbols are 
defined in the text. 

Constant Value 

C11 168.4 GPa 

C12 121.4 GPa 

C44 75.4 GPa 

Ý γ 
o
 1.0 

τo 6.21 MPa 

m 0.05 

A 283.51 MPa 

n 0.729 

α 0.5 

 

4.3. Results of Coupled Simulations 
Figure 4.1 shows the distributions of elastic and plastic strain energy density in the polycrystal, 
as defined by equations (4.2) and (4.3), respectively, at various stages of grain growth and after 
1% elongation. The dimensions of the simulation cells are 200 x 200 in arbitrary units. The finite 
element meshes have a thickness of 1. The stored elastic energy density is almost an order of 
magnitude larger than the plastic energy density. However, because the elastic driving force for 
grain growth depends on the difference in stored energy density across a grain boundary, and the 
plastic driving force is the larger of the two energy densities at the boundary, the elastic and 
plastic driving forces for grain growth are actually comparable in this case. 
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t = 0 t = 117 t = 264 t = 538 t = 1,540 t = 2,147  

(a) 

       

t = 0 t = 117 t = 264 t = 538 t = 1,540 t = 2,147  

(b) 

Figure 4.1. Distributions of a) elastic and b) plastic strain energy density at various stages of 
grain growth. Energy densities are in units of MPa. 

While the local details of the strain energy distributions change as the grain topology changes, 
the qualitative features of these distributions remain largely unchanged. Grains with low average 
strain energy density (dark gray) generally stay that way, and the same is true for high-energy 
regions (light gray). This suggests that the details of the grain topology do not substantially affect 
overall mechanical response. Figure 4.2 shows the elastic and plastic strain energy densities in 
the polycrystal deformed 1% after t = 538 of grain growth, but with a set of random grain 
orientations different than that in figure 4.1. Clearly, the stored energy distributions in figures 
4.2a and 2b are very different from those in the corresponding (fourth) frames in figures 4.1a and 
1b, indicating that the overall strain energy density distributions are controlled primarily by the 
orientations of the individual grains. 

  

(a) (b) 

Figure 4.2. Distributions of a) elastic and b) plastic strain energy density after t = 538 of grain 
growth, with a different set of random grain orientations than in figure 4.1. 

At 1% elongation, elastic strain energy density is almost an order of magnitude larger than 
plastic strain energy density. Nonetheless, the elastic and plastic driving forces for grain growth 
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are comparable. Overall elastic and plastic strain energy distributions depend primarily on the 
orientations of individual grains, rather than grain boundary network topology.  
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