182 research outputs found
Cable failures off Oahu, Hawaii caused by Hurricane Iwa
Six submarine telecommunications cables on the steep insular slope
off southwest Oahu were damaged or broken by a combination of debris slides
and large-block talus movement or, for the shallowest cables, wave induced
chafe.
These problems were caused by the sea floor's response to high
surface energy produced by Hurricane Iwa. An examination of all available
data does not support the concept of failure by turbidity currents.Funding was provided by the International Cable Engineering Division
of A T & T Communications under contract number 47-5697
Identification of generic study areas for the disposal of low level radioactive waste : western North Atlantic Ocean
There is a growing need to effectively dispose of the low
level radioactive waste presently accumulating in the United
States. It may be decided to "dump" radioactive contamination
products onto the deep sea floor (within 200 miles of the U.S.)
in accordance with present IAEA guidelines (see Appendix A) for
ocean dumping of low level waste; in the event of such a
decision suitable areas must be identified and carefully
studied to determine the subsequent influence of the waste on
the environment.
Using the site suitability criteria mentioned above we have
identified two areas of possible use for low level waste disposal,
one north of Puerto Rico and one east of Cape Hatteras,
as deserving further study.
The following report describes the relevant physical and
geological characteristics of these two areas that may be
important in considering a dumping operation. We have also
made some recommendations for confirmatory research.
The Hatteras Abyssal Plain, lying close to the 200 mile
limit, appears to be a viable region for the focus of future
research efforts.Prepared for the Sandia Laboratories
A comparison of cross-stream velocities and Gulf Stream translations utilizing in-situ and remotely-sensed data
Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1988In previous Gulf Stream work (Hall and Bryden, 1985,
Hall, 1985, 198GA, 198GB), a decomposition of multiple depth
current records was developed which produced along- and
cross-stream components. The cross-stream component was
found to occasionally match lateral displacements of the
Stream, as determined by temperature changes measured at the
current meters.
This study determined where within the meander pattern
of the Gulf Stream the cross-stream velocity calculated from
current meters at depth correctly predicted translations of
the Gulf Stream as measured by satellite data. Additionally,
the effects of recently quantified cross-stream velocities
associated with the curvature of Gulf Stream meanders were
analyzed.Funds for this work were provided by ONR contracts
N00014-86-K-0751 and N00014-87-K-0007
SWCam: the short wavelength camera for the CCAT Observatory
We describe the Short Wavelength Camera (SWCam) for the CCAT observatory including the primary science drivers, the coupling of the science drivers to the instrument requirements, the resulting implementation of the design, and its performance expectations at first light. CCAT is a 25 m submillimeter telescope planned to operate at 5600 meters, near the summit of Cerro Chajnantor in the Atacama Desert in northern Chile. CCAT is designed to give a total wave front error of 12.5 μm rms, so that combined with its high and exceptionally dry site, the facility will provide unsurpassed point source sensitivity deep into the short submillimeter bands to wavelengths as short as the 200 μm telluric window. The SWCam system consists of 7 sub-cameras that address 4 different telluric windows: 4 subcameras at 350 μm, 1 at 450 μm, 1 at 850 μm, and 1 at 2 mm wavelength. Each sub-camera has a 6’ diameter field of view, so that the total instantaneous field of view for SWCam is equivalent to a 16’ diameter circle. Each focal plane is populated with near unit filling factor arrays of Lumped Element Kinetic Inductance Detectors (LEKIDs) with pixels scaled to subtend an solid angle of (λ/D)2 on the sky. The total pixel count is 57,160. We expect background limited performance at each wavelength, and to be able to map < 35(°)2 of sky to 5 σ on the confusion noise at each wavelength per year with this first light instrument. Our primary science goal is to resolve the Cosmic Far-IR Background (CIRB) in our four colors so that we may explore the star and galaxy formation history of the Universe extending to within 500 million years of the Big Bang. CCAT's large and high-accuracy aperture, its fast slewing speed, use of instruments with large format arrays, and being located at a superb site enables mapping speeds of up to three orders of magnitude larger than contemporary or near future facilities and makes it uniquely sensitive, especially in the short submm bands
MAKO: a pathfinder instrument for on-sky demonstration of low-cost 350 micron imaging arrays
Submillimeter cameras now have up to 10^4 pixels (SCUBA 2). The proposed CCAT 25-meter submillimeter telescope will feature a 1 degree field-of-view. Populating the focal plane at 350 microns would require more than 10^6 photon-noise limited pixels. To ultimately achieve this scaling, simple detectors and high-density multiplexing are essential. We are addressing this long-term challenge through the development of frequency-multiplexed superconducting microresonator detector arrays. These arrays use lumped-element, direct-absorption resonators patterned from titanium nitride films. We will discuss our progress toward constructing a scalable 350 micron pathfinder instrument focusing on fabrication simplicity, multiplexing density, and ultimately a low per-pixel cost
SWCam: the short wavelength camera for the CCAT Observatory
We describe the Short Wavelength Camera (SWCam) for the CCAT observatory including the primary science drivers, the coupling of the science drivers to the instrument requirements, the resulting implementation of the design, and its performance expectations at first light. CCAT is a 25 m submillimeter telescope planned to operate at 5600 meters, near the summit of Cerro Chajnantor in the Atacama Desert in northern Chile. CCAT is designed to give a total wave front error of 12.5 μm rms, so that combined with its high and exceptionally dry site, the facility will provide unsurpassed point source sensitivity deep into the short submillimeter bands to wavelengths as short as the 200 μm telluric window. The SWCam system consists of 7 sub-cameras that address 4 different telluric windows: 4 subcameras at 350 μm, 1 at 450 μm, 1 at 850 μm, and 1 at 2 mm wavelength. Each sub-camera has a 6’ diameter field of view, so that the total instantaneous field of view for SWCam is equivalent to a 16’ diameter circle. Each focal plane is populated with near unit filling factor arrays of Lumped Element Kinetic Inductance Detectors (LEKIDs) with pixels scaled to subtend an solid angle of (λ/D)2 on the sky. The total pixel count is 57,160. We expect background limited performance at each wavelength, and to be able to map < 35(°)2 of sky to 5 σ on the confusion noise at each wavelength per year with this first light instrument. Our primary science goal is to resolve the Cosmic Far-IR Background (CIRB) in our four colors so that we may explore the star and galaxy formation history of the Universe extending to within 500 million years of the Big Bang. CCAT's large and high-accuracy aperture, its fast slewing speed, use of instruments with large format arrays, and being located at a superb site enables mapping speeds of up to three orders of magnitude larger than contemporary or near future facilities and makes it uniquely sensitive, especially in the short submm bands
Expansion of Canopy-Forming Willows Over the Twentieth Century on Herschel Island, Yukon Territory, Canada
Canopy-forming shrubs are reported to be increasing at sites around the circumpolar Arctic. Our results indicate expansion in canopy cover and height of willows on Herschel Island located at 70° north on the western Arctic coast of the Yukon Territory. We examined historic photographs, repeated vegetation surveys, and conducted monitoring of long-term plots and found evidence of increases of each of the dominant canopy-forming willow species (Salix richardsonii, Salix glauca and Salix pulchra), during the twentieth century. A simple model of patch initiation indicates that the majority of willow patches for each of these species became established between 1910 and 1960, with stem ages and maximum growth rates indicating that some patches could have established as late as the 1980s. Collectively, these results suggest that willow species are increasing in canopy cover and height on Herschel Island. We did not find evidence that expansion of willow patches is currently limited by herbivory, disease, or growing conditions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13280-011-0168-y) contains supplementary material, which is available to authorized users
The Ups and Downs in Women's Employment: Shifting Composition or Behavior from 1970 to 2010?
This paper tracks factors contributing to the ups and downs in women’s employment from 1970 to 2010 using regression decompositions focusing on whether changes are due to shifts in the means (composition of women) or due to shifts in coefficients (inclinations of women to work for pay). Compositional shifts in education exerted a positive effect on women’s employment across all decades, while shifts in the composition of other family income, particularly at the highest deciles, depressed married women’s employment over the 1990s contributing to the slowdown in this decade. A positive coefficient effect of education was found in all decades, except the 1990s, when the effect was negative, depressing women’s employment. Further, positive coefficient results for other family income at the highest deciles bolstered married women’s employment over the 1990s. Models are run separately for married and single women demonstrating the varying results of other family income by marital status. This research was supported in part by an Upjohn Institute Early Career Research Award
High-Resolution Analysis of Parent-of-Origin Allelic Expression in the Arabidopsis Endosperm
Genomic imprinting is an epigenetic phenomenon leading to parent-of-origin specific differential expression of maternally and paternally inherited alleles. In plants, genomic imprinting has mainly been observed in the endosperm, an ephemeral triploid tissue derived after fertilization of the diploid central cell with a haploid sperm cell. In an effort to identify novel imprinted genes in Arabidopsis thaliana, we generated deep sequencing RNA profiles of F1 hybrid seeds derived after reciprocal crosses of Arabidopsis Col-0 and Bur-0 accessions. Using polymorphic sites to quantify allele-specific expression levels, we could identify more than 60 genes with potential parent-of-origin specific expression. By analyzing the distribution of DNA methylation and epigenetic marks established by Polycomb group (PcG) proteins using publicly available datasets, we suggest that for maternally expressed genes (MEGs) repression of the paternally inherited alleles largely depends on DNA methylation or PcG-mediated repression, whereas repression of the maternal alleles of paternally expressed genes (PEGs) predominantly depends on PcG proteins. While maternal alleles of MEGs are also targeted by PcG proteins, such targeting does not cause complete repression. Candidate MEGs and PEGs are enriched for cis-proximal transposons, suggesting that transposons might be a driving force for the evolution of imprinted genes in Arabidopsis. In addition, we find that MEGs and PEGs are significantly faster evolving when compared to other genes in the genome. In contrast to the predominant location of mammalian imprinted genes in clusters, cluster formation was only detected for few MEGs and PEGs, suggesting that clustering is not a major requirement for imprinted gene regulation in Arabidopsis
Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial
Background
Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain.
Methods
RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and
ClinicalTrials.gov
,
NCT00541047
.
Findings
Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths.
Interpretation
Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy.
Funding
Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society
- …