16 research outputs found
Chemosensory cells in the respiratory tract as crucial regulators of innate immune responses
During recent years chemosensory cells in extraoral tissues have been established as mediators for the detection and regulation of innate immune processes in response to pathogens. Under physiological conditions, chemosensory cells are present throughout the respiratory epithelium of the upper and lower airways as well as in the main olfactory epithelium. Additionally, they emerge in the alveolar region of the lung upon viral infections. Chemosensory cells in the upper and the lower airways detect signalling molecules from gram-positive and gram-negative bacteria as well as aeroallergens and fungi. Upon stimulation they release multiple molecules, such as the transmitter acetylcholine, the cysteinyl leukotriene E4 and the cytokine interleukin-25, which act as autocrine and paracrine signals and thereby orchestrate the innate immune responses in the respiratory system. Activation of chemosensory cells stimulates various immune cells, e.g. type 2 innate lymphoid cells, modulates mucociliary clearance and induces a protective neurogenic inflammation. This review compiles and discusses recent findings regarding chemosensory cell function in the respiratory tract
Nicotinic Acetylcholine Receptors in the Respiratory Tract
Nicotinic acetylcholine receptors (nAChR) are widely distributed in neuronal and nonneuronal tissues, where they play diverse physiological roles. In this review, we highlight the recent
findings regarding the role of nAChR in the respiratory tract with a special focus on the involvement
of nAChR in the regulation of multiple processes in health and disease. We discuss the role of nAChR
in mucociliary clearance, inflammation, and infection and in airway diseases such as asthma, chronic
obstructive pulmonary disease, and cancer. The subtype diversity of nAChR enables differential
regulation, making them a suitable pharmaceutical target in many diseases. The stimulation of the
α3β4 nAChR could be beneficial in diseases accompanied by impaired mucociliary clearance, and
the anti-inflammatory effect due to an α7 nAChR stimulation could alleviate symptoms in diseases
with chronic inflammation such as chronic obstructive pulmonary disease and asthma, while the
inhibition of the α5 nAChR could potentially be applied in non-small cell lung cancer treatment.
However, while clinical studies targeting nAChR in the airways are still lacking, we suggest that
more detailed research into this topic and possible pharmaceutical applications could represent
a valuable tool to alleviate the symptoms of diverse airway diseases
Nicotine stimulates ion transport via metabotropic β4 subunit containing nicotinic ACh receptors
Background and Purpose
Mucociliary clearance is an innate immune process of the airways, essential for removal of respiratory pathogens. It depends on ciliary beat and ion and fluid homeostasis of the epithelium. We have shown that nicotinic ACh receptors (nAChRs) activate ion transport in mouse tracheal epithelium. Yet the receptor subtypes and signalling pathways involved remained unknown.
Experimental Approach
Transepithelial short circuit currents (ISC) of freshly isolated mouse tracheae were recorded using the Ussing chamber technique. Changes in [Ca2+]i were studied on freshly dissociated mouse tracheal epithelial cells.
Key Results
Apical application of the nAChR agonist nicotine transiently increased ISC. The nicotine effect was abolished by the nAChR antagonist mecamylamine. α‐Bungarotoxin (α7 antagonist) had no effect. The agonists epibatidine (α3β2, α4β2, α4β4 and α3β4) and A‐85380 (α4β2 and α3β4) increased ISC. The antagonists dihydro‐β‐erythroidine (α4β2, α3β2, α4β4 and α3β4), α‐conotoxin MII (α3β2) and α‐conotoxin PnIA (α3β2) reduced the nicotine effect. Nicotine‐ and epibatidine‐induced currents were unaltered in β2−/−mice, but in β4−/− mice no increase was observed. In the presence of thapsigargin (endoplasmatic reticulum Ca2+‐ATPase inhibitor) or the ryanodine receptor antagonists JTV‐519 and dantrolene there was a reduction in the nicotine‐effect, indicating involvement of Ca2+ release from intracellular stores. Additionally, the PKA inhibitor H‐89 and the TMEM16A (Ca2+‐activated chloride channel) inhibitor T16Ainh‐A01 significantly reduced the nicotine‐effect.
Conclusion and Implications
α3β4 nAChRs are responsible for the nicotine‐induced current changes via Ca2+ release from intracellular stores, PKA and ryanodine receptor activation. These nAChRs might be possible targets to stimulate chloride transport via TMEM16A
Human airway tuft cells influence the mucociliary clearance through cholinergic signalling
Background Airway tuft cells, formerly called brush cells have long been described only morphologically in human
airways. More recent RNAseq studies described a chemosensory cell population, which includes tuft cells, by a distinct
gene transcription signature. Yet, until which level in the tracheobronchial tree in native human airway epithelium tuft
cells occur and if they function as regulators of innate immunity, e.g., by regulating mucociliary clearance, remained
largely elusive.
Methods We performed immunohistochemistry, RT-PCR and immunoblotting analyses for various tuft cell markers
to confirm the presence of this cell type in human tracheal samples. Immunohistochemistry was conducted to
study the distribution of tuft cells along the intrapulmonary airways in humans. We assessed the influence of bitter
substances and the taste transduction pathway on mucociliary clearance in mouse and human tracheal samples by
measuring particle transport speed.
Results Tuft cells identified by the expression of their well-established marker POU class 2 homeobox 3 (POU2F3)
were present from the trachea to the bronchioles. We identified choline acetyltransferase in POU2F3 expressing cells
as well as the transient receptor potential melastatin 5 (TRPM5) channel in a small population of tracheal epithelial
cells with morphological appearance of tuft cells. Application of bitter substances, such as denatonium, led to an
increase in mucociliary clearance in human tracheal preparations. This was dependent on activation of the TRPM5
channel and involved cholinergic and nitric oxide signalling, indicating a functional role for human tuft cells in the
regulation of mucociliary clearance. Conclusions We were able to detect tuft cells in the tracheobronchial tree down to the level of the bronchioles.
Moreover, taste transduction and cholinergic signalling occur in the same cells and regulate mucociliary clearance.
Thus, tuft cells are potentially involved in the regulation of innate immunity in human airways
Bitter taste signaling in tracheal epithelial brush cells elicits innate immune responses to bacterial infection
Constant exposure of the airways to inhaled pathogens requires efficient early immune responses protecting against
infections. How bacteria on the epithelial surface are detected and first-line protective mechanisms are initiated
are not well understood. We have recently shown that tracheal brush cells (BCs) express functional taste receptors.
Here we report that bitter taste signaling in murine BCs induces neurogenic inflammation. We demonstrate that BC
signaling stimulates adjacent sensory nerve endings in the trachea to release the neuropeptides CGRP and substance
P that mediate plasma extravasation, neutrophil recruitment, and diapedesis. Moreover, we show that bitter tasting
quorum-sensing molecules from Pseudomonas aeruginosa activate tracheal BCs. BC signaling depends on the key taste
transduction gene Trpm5, triggers secretion of immune mediators, among them the most abundant member of the
complement system, and is needed to combat P. aeruginosa infections. Our data provide functional insight into firstline defense mechanisms against bacterial infections of the lung
Bitter taste signaling in tracheal epithelial brush cells elicits innate immune responses to bacterial infection.
peer reviewedConstant exposure of the airways to inhaled pathogens requires efficient early immune responses protecting against infections. How bacteria on the epithelial surface are detected and first-line protective mechanisms are initiated are not well understood. We have recently shown that tracheal brush cells (BCs) express functional taste receptors. Here we report that bitter taste signaling in murine BCs induces neurogenic inflammation. We demonstrate that BC signaling stimulates adjacent sensory nerve endings in the trachea to release the neuropeptides CGRP and substance P that mediate plasma extravasation, neutrophil recruitment, and diapedesis. Moreover, we show that bitter tasting quorum-sensing molecules from Pseudomonas aeruginosa activate tracheal BCs. BC signaling depends on the key taste transduction gene Trpm5, triggers secretion of immune mediators, among them the most abundant member of the complement system, and is needed to combat P. aeruginosa infections. Our data provide functional insight into first-line defense mechanisms against bacterial infections of the lung
Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial
Background
Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear.
Methods
RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047.
Findings
Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths.
Interpretation
Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population
Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial
Background
Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain.
Methods
RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and
ClinicalTrials.gov
,
NCT00541047
.
Findings
Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths.
Interpretation
Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy.
Funding
Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society
Taste Receptor Activation in Tracheal Brush Cells by Denatonium Modulates ENaC Channels via Ca2+, cAMP and ACh
Mucociliary clearance is a primary defence mechanism of the airways consisting of two components, ciliary beating and transepithelial ion transport (ISC). Specialised chemosensory cholinergic epithelial cells, named brush cells (BC), are involved in regulating various physiological and immunological processes. However, it remains unclear if BC influence ISC. In murine tracheae, denatonium, a taste receptor agonist, reduced basal ISC in a concentration-dependent manner (EC50 397 µM). The inhibition of bitter taste signalling components with gallein (Gβγ subunits), U73122 (phospholipase C), 2-APB (IP3-receptors) or with TPPO (Trpm5, transient receptor potential-melastatin 5 channel) reduced the denatonium effect. Supportively, the ISC was also diminished in Trpm5−/− mice. Mecamylamine (nicotinic acetylcholine receptor, nAChR, inhibitor) and amiloride (epithelial sodium channel, ENaC, antagonist) decreased the denatonium effect. Additionally, the inhibition of Gα subunits (pertussis toxin) reduced the denatonium effect, while an inhibition of phosphodiesterase (IBMX) increased and of adenylate cyclase (forskolin) reversed the denatonium effect. The cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor CFTRinh172 and the KCNQ1 potassium channel antagonist chromanol 293B both reduced the denatonium effect. Thus, denatonium reduces ISC via the canonical bitter taste signalling cascade leading to the Trpm5-dependent nAChR-mediated inhibition of ENaC as well as Gα signalling leading to a reduction in cAMP-dependent ISC. Therefore, BC activation contributes to the regulation of fluid homeostasis
Nicotinic Acetylcholine Receptors in the Respiratory Tract
Nicotinic acetylcholine receptors (nAChR) are widely distributed in neuronal and non-neuronal tissues, where they play diverse physiological roles. In this review, we highlight the recent findings regarding the role of nAChR in the respiratory tract with a special focus on the involvement of nAChR in the regulation of multiple processes in health and disease. We discuss the role of nAChR in mucociliary clearance, inflammation, and infection and in airway diseases such as asthma, chronic obstructive pulmonary disease, and cancer. The subtype diversity of nAChR enables differential regulation, making them a suitable pharmaceutical target in many diseases. The stimulation of the α3β4 nAChR could be beneficial in diseases accompanied by impaired mucociliary clearance, and the anti-inflammatory effect due to an α7 nAChR stimulation could alleviate symptoms in diseases with chronic inflammation such as chronic obstructive pulmonary disease and asthma, while the inhibition of the α5 nAChR could potentially be applied in non-small cell lung cancer treatment. However, while clinical studies targeting nAChR in the airways are still lacking, we suggest that more detailed research into this topic and possible pharmaceutical applications could represent a valuable tool to alleviate the symptoms of diverse airway diseases