28 research outputs found

    A review of tumor-specific fluorescence-guided surgery for colorectal cancer

    No full text
    The present study reviews the use of tumor-specific antibodies conjugated to fluorescent dyes in preclinical and clinical studies to enhance visualization of primary tumors and metastases for fluorescence-guided surgery (FGS) in colorectal cancer (CRC). A search strategy was developed using the peer-reviewed National Center for Biotechnology Information (NCBI) database on PubMed. Studies using tumor-specific fluorescence imaging and FGS techniques on murine models of colorectal cell lines or patient-derived orthotopic xenograft (PDOX) colorectal cancer are reviewed. A total of 24 articles were identified that met the inclusion criteria, 21 preclinical and 3 clinical trials. The most widely used target antigen in preclinical and clinical trials was carcinoembryonic antigen (CEA). Mouse studies and clinical studies have demonstrated that the use of FGS in CRC can aid in decreased residual tumor and decreased rates of recurrence. As the mainstay of colorectal cancer treatment is surgery, the addition of intraoperative fluorescence imaging can help locate tumor margins, visualize occult micro-metastases, drive surgical decision making and improve patient outcomes

    Near-infrared photoimmunotherapy is effective treatment for colorectal cancer in orthotopic nude-mouse models.

    No full text
    BackgroundPhotoimmunotherapy (PIT) employs the use of a near-infrared (NIR) laser to activate an antibody conjugated to a NIR-activatable dye to induce cancer cell death. PIT has shown to be effective in a number of studies, however, there are no data on its use in colorectal cancer in an orthotopic model.MethodsHumanized anti-CEA antibody (M5A) was conjugated to NIR-activatable IRDye700DX (M5A-700). PIT was validated in vitro with a colon cancer cell-line, using a laser intensity of either 4 J/cm2, 8 J/cm2, or 16 J/cm2. Orthotopic colon cancer mouse models were established by surgical implantation of LS174T tumor fragments onto the cecum. M5A-700 was administered and PIT was performed 24 hours later using a 690 nm laser. Repeat PIT was performed after 7 days in one group. Control mice received laser treatment only.ResultsIn vitro PIT demonstrated tumor cell death in a laser intensity dose-dependent fashion. In orthotopic models, control mice demonstrated persistent tumor growth. Mice that underwent PIT one time had tumor growth arrested for one week, after which re-growth occurred. The group that received repeated PIT exposure had persistent inhibition of tumor growth.ConclusionPIT arrests tumor growth in colon cancer orthotopic nude-mouse models. Repeated PIT arrests colon cancer growth for a longer period of time. PIT may be a useful therapy in the future as an adjunct to surgical resection or as primary therapy to suppress tumor progression

    Humanized Anti–Tumor-Associated Glycoprotein–72 for Submillimeter Near-Infrared Detection of Colon Cancer in Metastatic Mouse Models

    No full text
    BackgroundTumor-associated glycoprotein (TAG)-72 is a pancarcinoma antigen that is overexpressed in greater than 80% of colorectal adenocarcinomas. CC49 is a TAG-72-specific antibody. The aim of the present study was to demonstrate selective imaging of colon tumors and metastases with the humanized TAG-72 antibody (anti-huCC49) conjugated to a near-infrared fluorophore in orthotopic mouse models.MethodsAnti-huCC49 was conjugated to near-infrared dye IR800CW. Mouse imaging was performed with the Pearl Trilogy Small Animal and FLARE Imaging Systems. Subcutaneous mouse models of colon cancer cell line LS174T were used to determine the optimal dose of administration and timing of imaging. Orthotopic mouse models of LS174T were established by surgical orthotopic implantation of LS174T tumors onto the serosa of the cecum. Peritoneal carcinomatosis models were established by injection of LS174T cells into the peritoneum of nude mice. Mice were administered anti-huCC49-IR800 via tail vein injection. Mice were euthanized 72 h later and imaged after laparotomy.ResultsSubcutaneous LS174T xenografts demonstrated optimal tumor detection 72 h after administration with 50 Î¼g anti-huCC49-IR800CW. Tumors were visualized with fluorescence imaging with a mean tumor-to-liver ratio of 7.39 (standard deviation: 2.76). In the orthotopic model, metastases smaller than 1 mm were fluorescently visualized that were invisible with bright light.ConclusionsAnti-huCC49-IR800CW provides sensitive and specific imaging of colon cancer and metastases at a submillimeter resolution in metastatic nude mice models. This provides a promising near-infrared probe for the imaging of colon cancer and metastases for preoperative diagnosis and fluorescence-guided surgery
    corecore