570 research outputs found
Recommended from our members
Tumescent Injections in Subcutaneous Pig Tissue Disperse Fluids Volumetrically and Maintain Elevated Local Concentrations of Additives for Several Hours, Suggesting a Treatment for Drug Resistant Wounds.
PurposeBolus injection of fluid into subcutaneous tissue results in accumulation of fluid at the injection site. The fluid does not form a pool. Rather, the injection pressure forces the interstitial matrix to expand to accommodate the excess fluid in its volume, and the fluid becomes bound similar to that in a hydrogel. We seek to understand the properties and dynamics of externally tumesced (swollen) subcutaneous tissue as a first step in assessing whether tumescent antibiotic injections into wounds may provide a novel method of treatment.MethodsSubcutaneous injections of saline are performed in live and dead pigs and the physical properties (volume, expansion ratio, residence time, apparent diffusion constant) of the resulting fluid deposits are observed with diffusion-weighted magnetic resonance imaging, computed tomography, and 3D scanning.ResultsSubcutaneous tissue can expand to a few times its initial volume to accommodate the injected fluid, which is dispersed thoroughly throughout the tumescent volume. The fluid spreads to peripheral unexpanded regions over the course of a few minutes, after which it remains in place for several hours. Eventually the circulation absorbs the excess fluid and the tissue returns to its original state.ConclusionsGiven the evidence for dense fluid dispersal and several-hour residence time, a procedure is proposed whereby tumescent antibiotic injections are used to treat drug-resistant skin infections and chronic wounds that extend into the subcutaneous tissue. The procedure has the potential to effectively treat otherwise untreatable wounds by keeping drug concentrations above minimum inhibitory levels for extended lengths of time
Recommended from our members
Draft Genome Sequence of \u3cem\u3eDesulfurobacterium thermolithotrophum\u3c/em\u3e Strain HR11, a Novel Thermophilic Autotrophic Subspecies from a Deep-Sea Hydrothermal Vent
Desulfurobacterium sp. strain HR11 was isolated from a hydrothermal vent on the Juan de Fuca Ridge. We present the 1.55-Mb genome sequence of HR11, which contains 1,624 putative protein-coding sequences. Overall genome relatedness index analyses indicate that HR11 is a novel subspecies of D. thermolithotrophum
Determination and mitigation of the uncertainty of neutron diffraction measurements of residual strain in large-grained polycrystalline material
For large-grained samples it is advantageous to perform pairs of neutron diffraction measurements at the same spatial location but rotated 180° around the geometric centre of the gauge volume as a means of minimizing the scatter coming from the random positioning of grains within the gauge volume
- …