8,607 research outputs found

    A Volume Clearing Algorithm for Muon Tomography

    Full text link
    The primary objective is to enhance muon-tomographic image reconstruction capability by providing distinctive information in terms of deciding on the properties of regions or voxels within a probed volume "V" during any point of scanning: threat type, non-threat type, or not-sufficient data. An algorithm (MTclear) is being developed to ray-trace muon tracks and count how many straight tracks are passing through a voxel. If a voxel "v" has sufficient number of straight tracks (t), then "v" is a non-threat type voxel, unless there are sufficient number of scattering points (p) in "v" that will make it a threat-type voxel. The algorithm also keeps track of voxels for which not enough information is known: where p and v both fall below their respective threshold parameters. We present preliminary results showing how the algorithm works on data collected with a Muon Tomography station based on gas electron multipliers operated by our group. The MTclear algorithm provides more comprehensive information to a human operator or to a decision algorithm than that provided by conventional muon-tomographic reconstruction algorithms, in terms of qualitatively determining the threat possibility from a probed volume. This is quite important because only low numbers of cosmic ray source muons are typically available in nature for tomography, while a quick determination of threats is essential.Comment: 3 pages, 3 figures, submitted to conf. record of 2014 IEEE Nucl. Sci. Symposium, Seattl

    Performance of a Large-area GEM Detector Read Out with Wide Radial Zigzag Strips

    Full text link
    A 1-meter-long trapezoidal Triple-GEM detector with wide readout strips was tested in hadron beams at the Fermilab Test Beam Facility in October 2013. The readout strips have a special zigzag geometry and run along the radial direction with an azimuthal pitch of 1.37 mrad to measure the azimuthal phi-coordinate of incident particles. The zigzag geometry of the readout reduces the required number of electronic channels by a factor of three compared to conventional straight readout strips while preserving good angular resolution. The average crosstalk between zigzag strips is measured to be an acceptable 5.5%. The detection efficiency of the detector is (98.4+-0.2)%. When the non-linearity of the zigzag-strip response is corrected with track information, the angular resolution is measured to be (193+-3) urad, which corresponds to 14% of the angular strip pitch. Multiple Coulomb scattering effects are fully taken into account in the data analysis with the help of a stand-alone Geant4 simulation that estimates interpolated track errors.Comment: 30 pages, 28 figures, submitted to NIM

    Summary and Outlook of the International Workshop on Aging Phenomena in Gaseous Detectors (DESY, Hamburg, October, 2001)

    Get PDF
    High Energy Physics experiments are currently entering a new era which requires the operation of gaseous particle detectors at unprecedented high rates and integrated particle fluxes. Full functionality of such detectors over the lifetime of an experiment in a harsh radiation environment is of prime concern to the involved experimenters. New classes of gaseous detectors such as large-scale straw-type detectors, Micro-pattern Gas Detectors and related detector types with their own specific aging effects have evolved since the first workshop on wire chamber aging was held at LBL, Berkeley in 1986. In light of these developments and as detector aging is a notoriously complex field, the goal of the workshop was to provide a forum for interested experimentalists to review the progress in understanding of aging effects and to exchange recent experiences. A brief summary of the main results and experiences reported at the 2001 workshop is presented, with the goal of providing a systematic review of aging effects in state-of-the-art and future gaseous detectors.Comment: 14 pages, 2 pictures. Presented at the IEEE Nuclear Science Symposium and Medical Imaging Conference, November 4-10, 2001, San Diego, USA. Submitted to IEEE Trans. Nucl. Sci (IEEE-TNS

    Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a Muon Tomography station based on GEM detectors

    Full text link
    Muon Tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons in matter is a promising technique for detecting heavily shielded high-Z radioactive materials (U, Pu) in cargo or vehicles. The technique uses the deflection of cosmic ray muons in matter to perform tomographic imaging of high-Z material inside a probed volume. A Muon Tomography Station (MTS) requires position-sensitive detectors with high spatial resolution for optimal tracking of incoming and outgoing cosmic ray muons. Micro Pattern Gaseous Detector (MPGD) technologies such as Gas Electron Multiplier (GEM) detectors are excellent candidates for this application. We have built and operated a minimal MTS prototype based on 30cm \times 30cm GEM detectors for probing targets with various Z values inside the MTS volume. We report the first successful detection and imaging of medium-Z and high-Z targets of small volumes (~0.03 liters) using GEM-based Muon Tomography

    The Outer Tracker Detector of the HERA-B Experiment Part I: Detector

    Full text link
    The HERA-B Outer Tracker is a large system of planar drift chambers with about 113000 read-out channels. Its inner part has been designed to be exposed to a particle flux of up to 2.10^5 cm^-2 s^-1, thus coping with conditions similar to those expected for future hadron collider experiments. 13 superlayers, each consisting of two individual chambers, have been assembled and installed in the experiment. The stereo layers inside each chamber are composed of honeycomb drift tube modules with 5 and 10 mm diameter cells. Chamber aging is prevented by coating the cathode foils with thin layers of copper and gold, together with a proper drift gas choice. Longitudinal wire segmentation is used to limit the occupancy in the most irradiated detector regions to about 20 %. The production of 978 modules was distributed among six different laboratories and took 15 months. For all materials in the fiducial region of the detector good compromises of stability versus thickness were found. A closed-loop gas system supplies the Ar/CF4/CO2 gas mixture to all chambers. The successful operation of the HERA-B Outer Tracker shows that a large tracker can be efficiently built and safely operated under huge radiation load at a hadron collider.Comment: 28 pages, 14 figure

    Construction and Performance of Large-Area Triple-GEM Prototypes for Future Upgrades of the CMS Forward Muon System

    Get PDF
    At present, part of the forward RPC muon system of the CMS detector at the CERN LHC remains uninstrumented in the high-\eta region. An international collaboration is investigating the possibility of covering the 1.6 < |\eta| < 2.4 region of the muon endcaps with large-area triple-GEM detectors. Given their good spatial resolution, high rate capability, and radiation hardness, these micro-pattern gas detectors are an appealing option for simultaneously enhancing muon tracking and triggering capabilities in a future upgrade of the CMS detector. A general overview of this feasibility study will be presented. The design and construction of small (10\times10 cm2) and full-size trapezoidal (1\times0.5 m2) triple-GEM prototypes will be described. During detector assembly, different techniques for stretching the GEM foils were tested. Results from measurements with x-rays and from test beam campaigns at the CERN SPS will be shown for the small and large prototypes. Preliminary simulation studies on the expected muon reconstruction and trigger performances of this proposed upgraded muon system will be reported.Comment: 7 pages, 25 figures, submitted for publication in conference record of the 2011 IEEE Nuclear Science Symposium, Valencia, Spai
    corecore