7 research outputs found

    ECLAIRE: Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems. Project final report

    Get PDF
    The central goal of ECLAIRE is to assess how climate change will alter the extent to which air pollutants threaten terrestrial ecosystems. Particular attention has been given to nitrogen compounds, especially nitrogen oxides (NOx) and ammonia (NH3), as well as Biogenic Volatile Organic Compounds (BVOCs) in relation to tropospheric ozone (O3) formation, including their interactions with aerosol components. ECLAIRE has combined a broad program of field and laboratory experimentation and modelling of pollution fluxes and ecosystem impacts, advancing both mechanistic understanding and providing support to European policy makers. The central finding of ECLAIRE is that future climate change is expected to worsen the threat of air pollutants on Europe’s ecosystems. Firstly, climate warming is expected to increase the emissions of many trace gases, such as agricultural NH3, the soil component of NOx emissions and key BVOCs. Experimental data and numerical models show how these effects will tend to increase atmospheric N deposition in future. By contrast, the net effect on tropospheric O3 is less clear. This is because parallel increases in atmospheric CO2 concentrations will offset the temperature-driven increase for some BVOCs, such as isoprene. By contrast, there is currently insufficient evidence to be confident that CO2 will offset anticipated climate increases in monoterpene emissions. Secondly, climate warming is found to be likely to increase the vulnerability of ecosystems towards air pollutant exposure or atmospheric deposition. Such effects may occur as a consequence of combined perturbation, as well as through specific interactions, such as between drought, O3, N and aerosol exposure. These combined effects of climate change are expected to offset part of the benefit of current emissions control policies. Unless decisive mitigation actions are taken, it is anticipated that ongoing climate warming will increase agricultural and other biogenic emissions, posing a challenge for national emissions ceilings and air quality objectives related to nitrogen and ozone pollution. The O3 effects will be further worsened if progress is not made to curb increases in methane (CH4) emissions in the northern hemisphere. Other key findings of ECLAIRE are that: 1) N deposition and O3 have adverse synergistic effects. Exposure to ambient O3 concentrations was shown to reduce the Nitrogen Use Efficiency of plants, both decreasing agricultural production and posing an increased risk of other forms of nitrogen pollution, such as nitrate leaching (NO3-) and the greenhouse gas nitrous oxide (N2O); 2) within-canopy dynamics for volatile aerosol can increase dry deposition and shorten atmospheric lifetimes; 3) ambient aerosol levels reduce the ability of plants to conserve water under drought conditions; 4) low-resolution mapping studies tend to underestimate the extent of local critical loads exceedance; 5) new dose-response functions can be used to improve the assessment of costs, including estimation of the value of damage due to air pollution effects on ecosystems, 6) scenarios can be constructed that combine technical mitigation measures with dietary change options (reducing livestock products in food down to recommended levels for health criteria), with the balance between the two strategies being a matter for future societal discussion. ECLAIRE has supported the revision process for the National Emissions Ceilings Directive and will continue to deliver scientific underpinning into the future for the UNECE Convention on Long-range Transboundary Air Pollution

    ECLAIRE third periodic report

    Get PDF
    The ÉCLAIRE project (Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems) is a four year (2011-2015) project funded by the EU's Seventh Framework Programme for Research and Technological Development (FP7)

    Potential of milk mid-infrared spectra to predict nitrogen use efficiency of individual dairy cows in early lactation.

    Get PDF
    Improving nitrogen use efficiency (NUE) at both the individual cow and the herd level has become a key target in dairy production systems, for both environmental and economic reasons. Cost-effective and large-scale phenotyping methods are required to improve NUE through genetic selection and by feeding and management strategies. The aim of this study was to evaluate the possibility of using mid-infrared (MIR) spectra of milk to predict individual dairy cow NUE during early lactation. Data were collected from 129 Holstein cows, from calving until 50 d in milk, in 3 research herds (Denmark, Ireland, and the UK). In 2 of the herds, diets were designed to challenge cows metabolically, whereas a diet reflecting local management practices was offered in the third herd. Nitrogen intake (kg/d) and nitrogen excreted in milk (kg/d) were calculated daily. Nitrogen use efficiency was calculated as the ratio between nitrogen in milk and nitrogen intake, and expressed as a percentage. Individual daily values for NUE ranged from 9.7 to 81.7%, with an average of 36.9% and standard deviation of 10.4%. Milk MIR spectra were recorded twice weekly and were standardized into a common format to avoid bias between apparatus or sampling periods. Regression models predicting NUE using milk MIR spectra were developed on 1,034 observations using partial least squares or support vector machines regression methods. The models were then evaluated through (1) a cross-validation using 10 subsets, (2) a cow validation excluding 25% of the cows to be used as a validation set, and (3) a diet validation excluding each of the diets one by one to be used as validation sets. The best statistical performances were obtained when using the support vector machines method. Inclusion of milk yield and lactation number as predictors, in combination with the spectra, also improved the calibration. In cross-validation, the best model predicted NUE with a coefficient of determination of cross-validation of 0.74 and a relative error of 14%, which is suitable to discriminate between low- and high-NUE cows. When performing the cow validation, the relative error remained at 14%, and during the diet validation the relative error ranged from 12 to 34%. In the diet validation, the models showed a lack of robustness, demonstrating difficulties in predicting NUE for diets and for samples that were not represented in the calibration data set. Hence, a need exists to integrate more data in the models to cover a maximum of variability regarding breeds, diets, lactation stages, management practices, seasons, MIR instruments, and geographic regions. Although the model needs to be validated and improved for use in routine conditions, these preliminary results showed that it was possible to obtain information on NUE through milk MIR spectra. This could potentially allow large-scale predictions to aid both further genetic and genomic studies, and the development of farm management tools
    corecore