240 research outputs found

    Search for long-lived particles decaying in the CMS muon detectors in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search for long-lived particles (LLPs) decaying in the CMS muon detectors is presented. A data sample of proton-proton collisions at s\sqrt{s} = 13 TeV corresponding to an integrated luminosity of 138 fb1^{-1} recorded at the LHC in 2016-2018, is used. The decays of LLPs are reconstructed as high multiplicity clusters of hits in the muon detectors. In the context of twin Higgs models, the search is sensitive to LLP masses from 0.4 to 55 GeV and a broad range of LLP decay modes, including decays to hadrons, τ\tau leptons, electrons, or photons. No excess of events above the standard model background is observed. The most stringent limits to date from LHC data are set on the branching fraction of the Higgs boson decay to a pair of LLPs with masses below 10 GeV. This search also provides the best limits for various intervals of LLP proper decay length and mass. Finally, this search sets the first limits at the LHC on a dark quantum chromodynamic sector whose particles couple to the Higgs boson through gluon, Higgs boson, photon, vector, and dark-photon portals, and is sensitive to branching fractions of the Higgs boson to dark quarks as low as 2×\times103^{-3}

    Search for flavor changing neutral current interactions of the top quark in final states with a photon and additional jets in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search for the production of a top quark in association with a photon and additional jets via flavor changing neutral current interactions is presented. The analysis uses proton-proton collision data recorded by the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. The search is performed by looking for processes where a single top quark is produced in association with a photon, or a pair of top quarks where one of the top quarks decays into a photon and an up or charm quark. Events with an electron or a muon, a photon, one or more jets, and missing transverse momentum are selected. Multivariate analysis techniques are used to discriminate signal and standard model background processes. No significant deviation is observed over the predicted background. Observed (expected) upper limits are set on the branching fractions of top quark decays: B\mathcal{B}(t\touγ\gamma) <\lt 0.95×\times105^{-5} (1.20×\times105^{-5}) and B\mathcal{B}(t\tocγ\gamma) <\lt 1.51×\times105^{-5} (1.54×\times105^{-5}) at 95% confidence level, assuming a single nonzero coupling at a time. The obtained limit for B\mathcal{B}(t\touγ\gamma) is similar to the current best limit, while the limit for B\mathcal{B}(t\tocγ\gamma) is significantly tighter than previous results

    Search for the lepton flavor violating τ\tau \to 3μ\mu decay in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search for the lepton flavor violating τ\tau \to 3μ\mu decay is performed using proton-proton collision events at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC in 2017-2018, corresponding to an integrated luminosity of 97.7 fb1^{-1}. Tau leptons produced in both heavy-flavor hadron and W boson decays are exploited in the analysis. No evidence for the decay is observed. The results of this search are combined with an earlier null result based on data collected in 2016 to obtain a total integrated luminosity of 131 fb1^{-1}. The observed (expected) upper limits on the branching fraction B\mathcal{B}(τ\tau \to 3μ\mu) at confidence levels of 90 and 95% are 2.9×\times108^{-8} (2.4×\times108^{-8}) and 3.6×\times108^{-8} (3.0×\times108^{-8}), respectively

    The CMS Statistical Analysis and Combination Tool: COMBINE

    No full text
    International audienceThis paper describes the COMBINE software package used for statistical analyses by the CMS Collaboration. The package, originally designed to perform searches for a Higgs boson and the combined analysis of those searches, has evolved to become the statistical analysis tool presently used in the majority of measurements and searches performed by the CMS Collaboration. It is not specific to the CMS experiment, and this paper is intended to serve as a reference for users outside of the CMS Collaboration, providing an outline of the most salient features and capabilities. Readers are provided with the possibility to run COMBINE and reproduce examples provided in this paper using a publicly available container image. Since the package is constantly evolving to meet the demands of ever-increasing data sets and analysis sophistication, this paper cannot cover all details of COMBINE. However, the online documentation referenced within this paper provides an up-to-date and complete user guide

    Search for production of a single vector-like quark decaying to tH or tZ in the all-hadronic final state in pp collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search for electroweak production of a single vector-like T quark in association with a bottom (b) quark in the all-hadronic decay channel is presented. This search uses proton-proton collision data at s\sqrt{s} = 13 TeV collected by the CMS experiment at the CERN LHC during 2016-2018, corresponding to an integrated luminosity of 138 fb1^{-1} The T quark is assumed to have charge 2/3 and decay to a top (t) quark and a Higgs (H) or Z boson. Event kinematics and the presence of jets containing b hadrons are used to reconstruct the hadronic decays of the t quark and H or Z boson. No significant deviation from the standard model prediction is observed in the data. The 95% confidence level upper limits on the product of the production cross section and branching fraction of a T quark produced in association with a b quark and decaying via tH or tZ range from 1260 to 68 fb for T quark masses of 600-1200 GeV

    Searches for violation of Lorentz invariance in tt \mathrm{t} \overline{\mathrm{t}} production using dilepton events in proton-proton collisions at s= \sqrt{s}= 13 TeV

    No full text
    A search for violation of Lorentz invariance in the production of top quark pairs (tt \mathrm{t} \overline{\mathrm{t}} ) is presented. The measured normalized differential tt \mathrm{t} \overline{\mathrm{t}} production cross section, as function of the sidereal time, is examined for potential modulations induced by Lorentz-invariance breaking operators in an effective field theory extension of the standard model (SM). The cross section is measured from collision events collected by the CMS detector at a center-of-mass-energy of 13 TeV, corresponding to an integrated luminosity of 77.8 fb1 ^{-1} , and containing one electron and one muon. The results are found to be compatible with zero, in agreement with the SM, and are used to bound the Lorentz-violating couplings to be in ranges of 1-8 × \times 103^{-3} at 68% confidence level. This is the first precision test of the isotropy in special relativity with top quarks at the LHC, restricting further the bounds on such couplings by up two orders of magnitude with respect to previous searches conducted at the Tevatron.A search for violation of Lorentz invariance in the production of top quark pairs (ttˉ\mathrm{t\bar{t}}) is presented. The measured normalized differential ttˉ\mathrm{t\bar{t}} production cross section, as function of the sidereal time, is examined for potential modulations induced by Lorentz-invariance breaking operators in an effective field theory extension of the standard model (SM). The cross section is measured from collision events collected by the CMS detector at a center-of-mass-energy of 13 TeV, corresponding to an integrated luminosity of 77.8 fb1^{-1}, and containing one electron and one muon. The results are found to be compatible with zero, in agreement with the SM, and are used to bound the Lorentz-violating couplings to be in ranges of 1 - 8 ×\times 103^{-3} at 68% confidence level. This is the first precision test of the isotropy in special relativity with top quarks at the LHC, restricting further the bounds on such couplings by up two orders of magnitude with respect to previous searches conducted at the Tevatron

    Dark sector searches with the CMS experiment

    No full text
    Astrophysical observations provide compelling evidence for gravitationally interacting dark matter in the universe that cannot be explained by the standard model of particle physics. The extraordinary amount of data from the CERN LHC presents a unique opportunity to shed light on the nature of dark matter at unprecedented collision energies. This Report comprehensively reviews the most recent searches with the CMS experiment for particles and interactions belonging to a dark sector and for dark-sector mediators. Models with invisible massive particles are probed by searches for signatures of missing transverse momentum recoiling against visible standard model particles. Searches for mediators are also conducted via fully visible final states. The results of these searches are compared with those obtained from direct-detection experiments. Searches for alternative scenarios predicting more complex dark sectors with multiple new particles and new forces are also presented. Many of these models include long-lived particles, which could manifest themselves with striking unconventional signatures with relatively small amounts of background. Searches for such particles are discussed and their impact on dark-sector scenarios is evaluated. Many results and interpretations have been newly obtained for this Report.Astrophysical observations provide compelling evidence for gravitationally interacting dark matter in the universe that cannot be explained by the standard model of particle physics. The extraordinary amount of data from the CERN LHC presents a unique opportunity to shed light on the nature of dark matter at unprecedented collision energies. This Report comprehensively reviews the most recent searches with the CMS experiment for particles and interactions belonging to a dark sector and for dark-sector mediators. Models with invisible massive particles are probed by searches for signatures of missing transverse momentum recoiling against visible standard model particles. Searches for mediators are also conducted via fully visible final states. The results of these searches are compared with those obtained from direct-detection experiments. Searches for alternative scenarios predicting more complex dark sectors with multiple new particles and new forces are also presented. Many of these models include long-lived particles, which could manifest themselves with striking unconventional signatures with relatively small amounts of background. Searches for such particles are discussed and their impact on dark-sector scenarios is evaluated. Many results and interpretations have been newly obtained for this Report

    Observation of four top quark production in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe observation of the production of four top quarks in proton-proton collisions is reported, based on a data sample collected by the CMS experiment at a center-of-mass energy of 13 TeV in 2016-2018 at the CERN LHC and corresponding to an integrated luminosity of 138 fb1^{-1}. Events with two same-sign, three, or four charged leptons (electrons and muons) and additional jets are analyzed. Compared to previous results in these channels, updated identification techniques for charged leptons and jets originating from the hadronization of b quarks, as well as a revised multivariate analysis strategy to distinguish the signal process from the main backgrounds, lead to an improved expected signal significance of 4.9 standard deviations above the background-only hypothesis. Four top quark production is observed with a significance of 5.6 standard deviations, and its cross section is measured to be 17.73.5+3.7^{+3.7}_{-3.5} (stat) 1.9+2.3^{+2.3}_{-1.9} (syst) fb, in agreement with the available standard model predictions

    Search for flavor changing neutral current interactions of the top quark in final states with a photon and additional jets in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search for the production of a top quark in association with a photon and additional jets via flavor changing neutral current interactions is presented. The analysis uses proton-proton collision data recorded by the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. The search is performed by looking for processes where a single top quark is produced in association with a photon, or a pair of top quarks where one of the top quarks decays into a photon and an up or charm quark. Events with an electron or a muon, a photon, one or more jets, and missing transverse momentum are selected. Multivariate analysis techniques are used to discriminate signal and standard model background processes. No significant deviation is observed over the predicted background. Observed (expected) upper limits are set on the branching fractions of top quark decays: B\mathcal{B}(t\touγ\gamma) <\lt 0.95×\times105^{-5} (1.20×\times105^{-5}) and B\mathcal{B}(t\tocγ\gamma) <\lt 1.51×\times105^{-5} (1.54×\times105^{-5}) at 95% confidence level, assuming a single nonzero coupling at a time. The obtained limit for B\mathcal{B}(t\touγ\gamma) is similar to the current best limit, while the limit for B\mathcal{B}(t\tocγ\gamma) is significantly tighter than previous results

    Search for long-lived heavy neutrinos in the decays of B mesons produced in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search for long-lived heavy neutrinos (N) in the decays of \PB mesons produced in proton-proton collisions at s\sqrt{s} = 13 TeV is presented. The data sample corresponds to an integrated luminosity of 41.6 fb1^{-1} collected in 2018 by the CMS experiment at the CERN LHC, using a dedicated data stream that enhances the number of recorded events containing B mesons. The search probes heavy neutrinos with masses in the range 1 <\ltmNm_\mathrm{N}<\lt 3 GeV and decay lengths in the range 102^{-2}<\ltcτc\tau<\lt 104^{4} mm, where τN\tau_\mathrm{N} is the N proper mean lifetime. Signal events are defined by the signature B \toB\ell_\mathrm{B}NX; N \to±π\ell^{\pm} \pi^{\mp}, where the leptons B\ell_\mathrm{B} and \ell can be either a muon or an electron, provided that at least one of them is a muon. The hadronic recoil system, X, is treated inclusively and is not reconstructed. No significant excess of events over the standard model background is observed in any of the ±π\ell^{\pm}\pi^{\mp} invariant mass distributions. Limits at 95% confidence level on the sum of the squares of the mixing amplitudes between heavy and light neutrinos, VN2\vert V_\mathrm{N}\vert^2, and on cτc\tau are obtained in different mixing scenarios for both Majorana and Dirac-like N particles. The most stringent upper limit VN2\vert V_\mathrm{N}\vert^2 <\lt 2.0×\times105^{-5} is obtained at mNm_\mathrm{N} = 1.95 GeV for the Majorana case where N mixes exclusively with muon neutrinos. The limits on VN2\vert V_\mathrm{N}\vert^2 for masses 1 <\lt mNm_\mathrm{N} <\lt 1.7 GeV are the most stringent from a collider experiment to date
    corecore