2,248 research outputs found

    Effect of Sensory Feedback from the Proximal Upper Limb on Voluntary Isometric Finger Flexion and Extension in Hemiparetic Stroke Subjects

    Get PDF
    This study investigated the potential influence of proximal sensory feedback on voluntary distal motor activity in the paretic upper limb of hemiparetic stroke survivors and the potential effect of voluntary distal motor activity on proximal muscle activity. Ten stroke subjects and 10 neurologically intact control subjects performed maximum voluntary isometric flexion and extension, respectively, at the metacarpophalangeal (MCP) joints of the fingers in two static arm postures and under three conditions of electrical stimulation of the arm. The tasks were quantified in terms of maximum MCP torque [MCP flexion (MCPflex) or MCP extension (MCPext)] and activity of targeted (flexor digitorum superficialis or extensor digitorum communis) and nontargeted upper limb muscles. From a previous study on the MCP stretch reflex poststroke, we expected stroke subjects to exhibit a modulation of voluntary MCP torque production by arm posture and electrical stimulation and increased nontargeted muscle activity. Posture 1 (flexed elbow, neutral shoulder) led to greater MCPflex in stroke subjects than posture 2 (extended elbow, flexed shoulder). Electrical stimulation did not influence MCPflex or MCPext in either subject group. In stroke subjects, posture 1 led to greater nontargeted upper limb flexor activity during MCPflex and to greater elbow flexor and extensor activity during MCPext. Stroke subjects exhibited greater elbow flexor activity during MCPflex and greater elbow flexor and extensor activity during MCPext than control subjects. The results suggest that static arm posture can modulate voluntary distal motor activity and accompanying muscle activity in the paretic upper limb poststroke

    Modulation of Stretch Reflexes of the Finger Flexors by Sensory Feedback from the Proximal Upper Limb Poststroke

    Get PDF
    Neural coupling of proximal and distal upper limb segments may have functional implications in the recovery of hemiparesis after stroke. The goal of the present study was to investigate whether the stretch reflex response magnitude of spastic finger flexor muscles poststroke is influenced by sensory input from the shoulder and the elbow and whether reflex coupling of muscles throughout the upper limb is altered in spastic stroke survivors. Through imposed extension of the metacarpophalangeal (MCP) joints, stretch of the relaxed finger flexors of the four fingers was imposed in 10 relaxed stroke subjects under different conditions of proximal sensory input, namely static arm posture (3 different shoulder/elbow postures) and electrical stimulation (surface stimulation of biceps brachii or triceps brachii, or none). Fast (300°/s) imposed stretch elicited stretch reflex flexion torque at the MCP joints and reflex electromyographic (EMG) activity in flexor digitorum superficialis. Both measures were greatest in an arm posture of 90° of elbow flexion and neutral shoulder position. Biceps stimulation resulted in greater MCP stretch reflex flexion torque. Fast imposed stretch also elicited reflex EMG activity in nonstretched heteronymous upper limb muscles, both proximal and distal. These results suggest that in the spastic hemiparetic upper limb poststroke, sensorimotor coupling of proximal and distal upper limb segments is involved in both the increased stretch reflex response of the finger flexors and an increased reflex coupling of heteronymous muscles. Both phenomena may be mediated through changes poststroke in the spinal reflex circuits and/or in the descending influence of supraspinal pathways

    Development of a concurrent engineering tutorial as part of the “ESA_Lab@” initiative

    Get PDF
    As part of the “ESA_Lab@" initiative, a Concurrent Engineering facility has been constructed at the Mechanical Engineering department of Technical University Darmstadt. Concurrent Engineering is a well-proven concept for designing complex space systems and missions in the pre-phase 0/A mission phase. The Concurrent Engineering methodology and processes are enabled by a multidisciplinary team and specific infrastructure in terms of both hardware and software, which generate an effective and time efficient design management system. The university’s “Concurrent Engineering Lab” provides an environment for both researchers and students to explore and apply the Concurrent Engineering approach in areas such as (model-based) systems engineering, Industry 4.0/ Space 4.0, and space traffic management. Furthermore, collaboration with the European Space Operations Centre – also located in Darmstadt – regarding the application of Concurrent Engineering for Ground Segment & Operations has been started. The first addition to the university’s curriculum centered around the Concurrent Engineering Lab will be a “Concurrent Engineering Tutorial”, an opportunity to introduce the Concurrent Engineering methods and tools via hands-on experience to students of the newly established master’s degree program “Aerospace Engineering”. “Tutorials” are elective block courses of the degree program which offer practical learning experiences in many different fields, awarding 4 credit points upon successful completion. Building on the lectures "Fundamentals of Space Systems" and "Space Systems and Space Operations", the week-long “Concurrent Engineering Tutorial” will challenge students to use their acquired knowledge to develop a preliminary design for a predefined CubeSat mission. This Tutorial will not only provide a closer understanding of the individual subsystems of the space segment of a mission, the Concurrent Engineering process and the relevant software “COMET” by RHEA Group but will also create a synergy with a student association of the university, as one of their projects is the development of a CubeSat. This paper describes the background and approach to the development of the Tutorial, in particular the structure of the re-usable model architecture in “COMET”, which was specifically derived and implemented for this purpose and validated via a pilot stud

    Investigating the Photoyield of Spacecraft Materials

    Get PDF
    Understanding the photon-induced charging of spacecraft materials is necessary in modeling the overall charging of a spacecraft. Measuring the photoyields of insulators requires sophistication, since insulators\u27 electrons must overcome a greater potential energy barrier, than electrons in a metal, to move within a solid. In order to determine the photoyields of insulating and semiconducting materials for NASA\u27s Solar Probe Mission (PBN, Alumina) and James Webb Space Telescope project (SixPI-ExVDA), a chopper and lock-in amplifier were added to a photoyield measurement system. A standard (Au) photoemission spectrum was compared with Au spectrum taken before addition of the lock-in to verify the validity of the modified system. Two insulators (polyboron nitride and Alumina) under investigation for the NASA/APL Solar Probe Mission and materials for the JWST project (vapor deposited aluminum and silicon on substrate Kapton E) were then studied using the modified photoemission measurement system. The resulting spectra were used to calculate the solar photoelectron yield and work function of each of the materials

    Electron-Induced Electron Yields of Uncharged Insulating Materials

    Get PDF
    This study presents electron-induced electron yield measurements from high-resistivity, high-yield materials to validate a model for the yield of uncharged insulators. These measurements are accomplished by using a low-fluence, pulsed incident electron beam and charge neutralization to minimize charge accumulation. Our measurements show large changes in total yield curves and yield decay curves, even for incident electron fluences of/mm2. We model the evolution of the yield as charge accumulates in the material in terms of electron re-capture based on the extended Chung-Everhart model of the electron emission spectrum. This model is used to explain anomalies measured in high yield ceramics, and to provide a method for determining the uncharged yield in highly insulating, high yield materials. Relevance of these results to spacecraft charging will also be discussed

    Associations between dietary factors and obesity-related biomarkers in healthy children and adolescents - a systematic review

    Get PDF
    Background: The obesity prevalence in children and adolescents has increased worldwide during the past 30 years. Although diet has been identified as one risk factor for developing obesity in this age group, the role of specific dietary factors is still unclear. One way to gain insight into the role of these factors might be to detect biomarkers that reflect metabolic health and to identify the associations between dietary factors and these biomarkers. This would enable nutrition-related metabolic changes to be detected early in life, which might be a promising strategy to prevent childhood obesity. However, existing literature offers only inconclusive evidence for diet and some of these obesity-related biomarkers (e.g., blood lipids). We thus conducted a systematic literature review to further examine eligible studies that investigate associations between dietary factors and 12 obesity-related biomarkers in healthy children and adolescents aged 3-18 years. Methods: We searched the scientific databases PubMed/Medline and Web of Science Core Collection for potentially eligible articles. Our final literature search resulted in 2727 hits. After the selection process, we included 81 articles that reported on 1111 single observations on dietary factors and any of the obesity-related biomarkers. Results: Around 81% of the total observations showed nonsignificant results. For many biomarkers we did not find enough observations to draw clear conclusions on possible associations between a dietary factor and the respective biomarker. In cases where we identified enough observations, the results were contradictory. Since these nonsignificant and inconclusive findings may impede the development of effective strategies against childhood obesity, this article takes a closer look at possible reasons for such findings. In addition, it provides action points for future research efforts. Conclusions: In conclusion, current evidence on associations between dietary factors and obesity-related biomarkers is inconclusive. We thus provided an overview on which specific limitations may impede current research. Such knowledge is necessary to enable future research efforts to better elucidate the role of diet in the early stages of obesity development

    The role of fast and slow EEG activity during sleep in males and females with major depressive disorder

    Full text link
    Sleep difficulties are highly prevalent in depression, and appear to be a contributing factor in the development and maintenance of symptoms. However, despite the generally acknowledged relationship between sleep and depression, the neurophysiological substrates underlying this relationship still remain unclear. Two main hypotheses were tested in this study. The first hypothesis states that sleep in depression is characterized by inadequate generation of restorative sleep, as indexed by reduced amounts of slow‐wave activity. Conversely, the second hypothesis states that poor sleep in depression is due to intrusions of fast‐frequency activity that may be reflective of a hyperaroused central nervous system. This study aimed to test both hypotheses in a large sample of individuals with clinically validated depression, as well as to examine sex as a moderator. Results suggest that depression is better characterized by an overall decrease in slow‐wave activity, which is related to elevated anxious and depressed mood the following morning. Results also suggest that females may be more likely to experience fast frequency activity related to depression symptom severity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/113693/1/psyp12472.pd
    • 

    corecore