6 research outputs found

    Estimation of valvular resistance of segmented aortic valves using computational fluid dynamics

    Get PDF
    Aortic valve stenosis is associated with an elevated left ventricular pressure and transaortic pressure drop. Clinicians routinely use Doppler ultrasound to quantify aortic valve stenosis severity by estimating this pressure drop from blood velocity. However, this method approximates the peak pressure drop, and is unable to quantify the partial pressure recovery distal to the valve. As pressure drops are flow dependent, it remains difficult to assess the true significance of a stenosis for low-flow low-gradient patients. Recent advances in segmentation techniques enable patient-specific Computational Fluid Dynamics (CFD) simulations of flow through the aortic valve. In this work a simulation framework is presented and used to analyze data of 18 patients. The ventricle and valve are reconstructed from 4D Computed Tomography imaging data. Ventricular motion is extracted from the medical images and used to model ventricular contraction and corresponding blood flow through the valve. Simplifications of the framework are assessed by introducing two simplified CFD models: a truncated time-dependent and a steady-state model. Model simplifications are justified for cases where the simulated pressure drop is above 10 mmHg. Furthermore, we propose a valve resistance index to quantify stenosis severity from simulation results. This index is compared to established metrics for clinical decision making, i.e. blood velocity and valve area. It is found that velocity measurements alone do not adequately reflect stenosis severity. This work demonstrates that combining 4D imaging data and CFD has the potential to provide a physiologically relevant diagnostic metric to quantify aortic valve stenosis severity

    Scale-Resolving Simulations of Steady and Pulsatile Flow Through Healthy and Stenotic Heart Valves

    Get PDF
    Blood-flow downstream of stenotic and healthy aortic valves exhibits intermittent random fluctuations in the velocity field which are associated with turbulence. Such flows warrant the use of computationally demanding scale-resolving models. The aim of this work was to compute and quantify this turbulent flow in healthy and stenotic heart valves for steady and pulsatile flow conditions. Large eddy simulations (LESs) and Reynolds-averaged Navier-Stokes (RANS) simulations were used to compute the flow field at inlet Reynolds numbers of 2700 and 5400 for valves with an opening area of 70 mm2 and 175 mm2 and their projected orifice-plate type counterparts. Power spectra and turbulent kinetic energy were quantified on the centerline. Projected geometries exhibited an increased pressure-drop (>90%) and elevated turbulent kinetic energy levels (>147%). Turbulence production was an order of magnitude higher in stenotic heart valves compared to healthy valves. Pulsatile flow stabilizes flow in the acceleration phase, whereas onset of deceleration triggered (healthy valve) or amplified (stenotic valve) turbulence. Simplification of the aortic valve by projecting the orifice area should be avoided in computational fluid dynamics (CFD). RANS simulations may be used to predict the transvalvular pressure-drop, but scale-resolving models are recommended when detailed information of the flow field is required

    The impact of shape uncertainty on aortic-valve pressure-drop computations

    Get PDF
    Patient-specific image-based computational fluid dynamics (CFD) is widely adopted in the cardiovascular research community to study hemodynamics, and will become increasingly important for personalized medicine. However, segmentation of the flow domain is not exact and geometric uncertainty can be expected which propagates through the computational model, leading to uncertainty in model output. Seventy-four aortic-valves were segmented from computed tomography images at peak systole. Statistical shape modeling was used to obtain an approximate parameterization of the original segmentations. This parameterization was used to train a meta-model that related the first five shape mode coefficients and flowrate to the CFD-computed transvalvular pressure-drop. Consequently, shape uncertainty in the order of 0.5 and 1.0 mm was emulated by introducing uncertainty in the shape mode coefficients. A global variance-based sensitivity analysis was performed to quantify output uncertainty and to determine relative importance of the shape modes. The first shape mode captured the opening/closing behavior of the valve and uncertainty in this mode coefficient accounted for more than 90% of the output variance. However, sensitivity to shape uncertainty is patient-specific, and the relative importance of the fourth shape mode coefficient tended to increase with increases in valvular area. These results show that geometric uncertainty in the order of image voxel size may lead to substantial uncertainty in CFD-computed transvalvular pressure-drops. Moreover, this illustrates that it is essential to assess the impact of geometric uncertainty on model output, and that this should be thoroughly quantified for applications that wish to use image-based CFD models

    Combining statistical shape modeling, CFD, and meta-modeling to approximate the patient-specific pressure-drop across the aortic valve in real-time

    No full text
    Background: Advances in medical imaging, segmentation techniques, and high performance computing have stimulated the use of complex, patient-specific, three-dimensional Computational Fluid Dynamics (CFD) simulations. Patient-specific, CFD-compatible geometries of the aortic valve are readily obtained. CFD can then be used to obtain the patient-specific pressure-flow relationship of the aortic valve. However, such CFD simulations are computationally expensive, and real-time alternatives are desired. Aim: The aim of this work is to evaluate the performance of a meta-model with respect to high-fidelity, three-dimensional CFD simulations of the aortic valve. Methods: Principal component analysis was used to build a statistical shape model (SSM) from a population of 74 iso-topological meshes of the aortic valve. Synthetic meshes were created with the SSM, and steady-state CFD simulations at flow-rates between 50 and 650 mL/s were performed to build a meta-model. The meta-model related the statistical shape variance, and flow-rate to the pressure-drop. Results: Even though the first three shape modes account for only 46% of shape variance, the features relevant for the pressure-drop seem to be captured. The three-mode shape-model approximates the pressure-drop with an average error of 8.8% to 10.6% for aortic valves with a geometric orifice area below 150 mm2. The proposed methodology was least accurate for aortic valve areas above 150 mm2. Further reduction to a meta-model introduces an additional 3% error. Conclusions: Statistical shape modeling can be used to capture shape variation of the aortic valve. Meta-models trained by SSM-based CFD simulations can provide an estimate of the pressure-flow relationship in real-time

    The impact of shape uncertainty on aortic-valve pressure-drop computations: supplementary data files

    No full text
    This data-set represents data that was used in: The impact of shape uncertainty on aortic-valve pressure-drop computations. M.J.M.M. Hoeijmakers, W. Huberts, M.C.M. Rutten, F.N. van de Vosse, 2021. Int. J. Numer. Method. Biomed. Eng. This data-set includes:- Resampled segmentations of 74 aortic valves with no, mild, moderate, or severe aortic stenosis - Corresponding extruded (10R) and un-extruded (0.1R) surface meshes in .vtk format.- *_R0.1.txt: centerline points and normals.- *_R10.txt: centerline points and normals that where used to post-process the computational fluid dynamics results. Computed pressures along the centerline on these planes are written to this file as well. Authors are free to use and explore this data-set for research purposes. For instance these surface meshes can be used to generate volumetric meshes (not included) of the enclosed domain for the purpose of computing the flow field(s)
    corecore