10 research outputs found

    A multi-resolution census algorithm for calculating vortex statistics in turbulent flows

    No full text
    Summary. The fundamental equations that model turbulent flow do not provide much insight into the size and shape of observed turbulent structures. We investigate the efficient and accurate representation of structures in two-dimensional turbulence by applying statistical models directly to the simulated vorticity field. Rather than extract the coherent portion of the image from the background variation, as in the classical signal-plus-noise model, we present a model for individual vortices using the non-decimated discrete wavelet transform. A template image, which is supplied by the user, provides the features to be extracted from the vorticity field. By transforming the vortex template into the wavelet domain, specific characteristics that are present in the template, such as size and symmetry, are broken down into components that are associated with spatial frequencies. Multivariate multiple linear regression is used to fit the vortex template to the vorticity field in the wavelet domain. Since all levels of the template decomposition may be used to model each level in the field decomposition, the resulting model need not be identical to the template. Application to a vortex census algorithm that records quantities of interest (such as size, peak amplitude and circulation) as the vorticity field evolves is given. The multiresolution census algorithm extracts coherent structures of all shapes and sizes in simulated vorticity fields and can reproduce known physical scaling laws when processing a set of vorticity fields that evolve over time

    Physiological seawater adaptation in juvenile Atlantic salmon (Salmo salar) autumn migrants

    No full text
    1. About 25 % of juvenile Atlantic salmon (Salmo salar) migrating downstream in the River Frome in southern England do so in the autumn rather than in the spring. Here, we examine the physiological status of these fish with regard to those features that adapt them to sea water during the parr–smolt transformation (i.e. gill Na+K+ ATPase activity; the number, size and type of chloride cells on the gill lamellae; salinity tolerance and relative plasma thyroid levels). 2. Autumn migrants, and those fish which subsequently reside in the tidal reaches during the winter, are not sufficiently physiologically adapted to permit permanent or early, entry into the marine environment. 3. It is not known what proportion of autumn migrating fish survive and return to spawn as adults. If significant numbers do return, however, the production from tidal reach habitats must be taken into account in the development of salmon stock management strategies, especially monitoring and assessment programmes, and in the evaluation of factors affecting stocks

    Environmental physiology of the teleostean thyroid gland: a review

    No full text

    Connective Tissue, Skin, and Bone Disorders

    No full text

    Mineral Metabolism

    No full text
    corecore