102 research outputs found

    GlmS and NagB Regulate Amino Sugar Metabolism in Opposing Directions and Affect Streptococcus mutans Virulence

    Get PDF
    Streptococcus mutans is a cariogenic pathogen that produces an extracellular polysaccharide (glucan) from dietary sugars, which allows it to establish a reproductive niche and secrete acids that degrade tooth enamel. While two enzymes (GlmS and NagB) are known to be key factors affecting the entrance of amino sugars into glycolysis and cell wall synthesis in several other bacteria, their roles in S. mutans remain unclear. Therefore, we investigated the roles of GlmS and NagB in S. mutans sugar metabolism and determined whether they have an effect on virulence. NagB expression increased in the presence of GlcNAc while GlmS expression decreased, suggesting that the regulation of these enzymes, which functionally oppose one another, is dependent on the concentration of environmental GlcNAc. A glmS-inactivated mutant could not grow in the absence of GlcNAc, while nagB-inactivated mutant growth was decreased in the presence of GlcNAc. Also, nagB inactivation was found to decrease the expression of virulence factors, including cell-surface protein antigen and glucosyltransferase, and to decrease biofilm formation and saliva-induced S. mutans aggregation, while glmS inactivation had the opposite effects on virulence factor expression and bacterial aggregation. Our results suggest that GlmS and NagB function in sugar metabolism in opposing directions, increasing and decreasing S. mutans virulence, respectively

    Aggregatibacter actinomycetemcomitans Omp29 Is Associated with Bacterial Entry to Gingival Epithelial Cells by F-Actin Rearrangement

    Get PDF
    The onset and progressive pathogenesis of periodontal disease is thought to be initiated by the entry of Aggregatibacter actinomycetemcomitans (Aa) into periodontal tissue, especially gingival epithelium. Nonetheless, the mechanism underlying such bacterial entry remains to be clarified. Therefore, this study aimed to investigate the possible role of Aa outer membrane protein 29 kD (Omp29), a homologue of E. coli OmpA, in promoting bacterial entry into gingival epithelial cells. To accomplish this, Omp29 expression vector was incorporated in an OmpA-deficient mutant of E. coli. Omp29+/OmpA− E. coli demonstrated 22-fold higher entry into human gingival epithelial line cells (OBA9) than Omp29−/OmpA− E. coli. While the entry of Aa and Omp29+/OmpA− E. coli into OBA9 cells were inhibited by anti-Omp29 antibody, their adherence to OBA9 cells was not inhibited. Stimulation of OBA9 cells with purified Omp29 increased the phosphorylation of focal adhesion kinase (FAK), a pivotal cell-signaling molecule that can up-regulate actin rearrangement. Furthermore, Omp29 increased the formation of F-actin in OBA9 cells. The internalization of Omp29-coated beads and the entry of Aa into OBA9 were partially inhibited by treatment with PI3-kinase inhibitor (Wortmannin) and Rho GTPases inhibitor (EDIN), both known to convey FAK-signaling to actin-rearrangement. These results suggest that Omp29 is associated with the entry of Aa into gingival epithelial cells by up-regulating F-actin rearrangement via the FAK signaling pathway

    抗菌ペプチドによる歯髄・象牙質複合体の再生

    Get PDF
    研究期間:平成18-19年度 ; 研究種目:基盤研究C ; 課題番号: 1859208

    Sugar Allocation to Metabolic Pathways is Tightly Regulated and Affects the Virulence of Streptococcus mutans

    No full text
    Bacteria take up and metabolize sugar as a carbohydrate source for survival. Most bacteria can utilize many sugars, including glucose, sucrose, and galactose, as well as amino sugars, such as glucosamine and N-acetylglucosamine. After entering the cytoplasm, the sugars are mainly allocated to the glycolysis pathway (energy production) and to various bacterial component biosynthesis pathways, including the cell wall, nucleic acids and amino acids. Sugars are also utilized to produce several virulence factors, such as capsule and lipoteichoic acid. Glutamine-fructose-6-phosphate aminotransferase (GlmS) and glucosamine-6-phosphate deaminase (NagB) have crucial roles in sugar distribution to the glycolysis pathway and to cell wall biosynthesis. In Streptococcus mutans, a cariogenic pathogen, the expression levels of glmS and nagB are coordinately regulated in response to the presence or absence of amino sugars. In addition, the disruption of this regulation affects the virulence of S. mutans. The expression of nagB and glmS is regulated by NagR in S. mutans, but the precise mechanism underlying glmS regulation is not clear. In Staphylococcus aureus and Bacillus subtilis, the mRNA of glmS has ribozyme activity and undergoes self-degradation at the mRNA level. However, there is no ribozyme activity region on glmS mRNA in S. mutans. In this review article, we summarize the sugar distribution, particularly the coordinated regulation of GlmS and NagB expression, and its relationship with the virulence of S. mutans

    黄色ブドウ球菌の糖代謝系の薬剤感受性に及ぼす影響についての研究

    Get PDF
    研究期間:平成17-18年度 ; 研究種目:基盤研究C ; 課題番号:1759039

    Antibacterial Peptides Resistance in Staphylococcus aureus: Various Mechanisms and the Association with Pathogenicity

    No full text
    Staphylococcus aureus is a bacterium that mainly colonizes the nasal cavity and skin. To colonize the host, it is necessary for S. aureus to resist many antibacterial factors derived from human and commensal bacteria. Among them are the bacteria-derived antimicrobial peptides (AMPs) called bacteriocins. It was reported that some two-component systems (TCSs), which are signal transduction systems specific to bacteria, are involved in the resistance to several bacteriocins in S. aureus. However, the TCS-mediated resistance is limited to relatively low concentrations of bacteriocins, while high concentrations of bacteriocins still exhibit antibacterial activity against S. aureus. To determine whether we could obtain highly bacteriocin-resistant mutants, we tried to isolate highly nisin A-resistant mutants by exposing the cells to sub-minimum inhibitory concentrations (MICs) of nisin A. Nisin A is one of the bacteriocins produced by Lactococcus lactis and is utilized as a food preservative worldwide. Finally, we obtained highly nisin A-resistant mutants with mutations in one TCS, BraRS, and in PmtR, which is involved in the expression of pmtABCD. Notably, some highly resistant strains also showed increased pathogenicity. Based on our findings, this review provides up-to-date information on the role of TCSs in the susceptibility to antibacterial peptides. Additionally, the mechanism for high antimicrobial peptides resistance and its association with pathogenicity in S. aureus is elucidated

    Reduced content of lysyl-phosphatidylglycerol in the cytoplasmic membrane affects susceptibility to moenomycin, as well as vancomycin, gentamicin, and antimicrobial peptides, in Staphylococcus aureus

    Full text link
    An association between moenomycin resistance and vancomycin intermediate resistance in Staphylococcus aureus was demonstrated previously. Thus, to elucidate the mechanism of vancomycin intermediate resistance, we searched for factors contributing to moenomycin resistance. Random Tn551 insertional mutagenesis of methicillin-resistant S. aureus strain COL yielded three mutants with decreased susceptibilities to moenomycin. Correspondingly, these mutants also exhibited slightly decreased susceptibilities to vancomycin. Genetic analysis revealed that two of the mutants had Tn551 insertions in the fmtC (mprF) gene, which is associated with the synthesis of lysyl-phosphatidylglycerol. The third Tn551 insertion was located in the lysC gene, which is involved in the biosynthesis of lysine from aspartic acid. Consequently, mutations in both of these loci reduced the lysyl-phosphatidylglycerol content in the cell membrane, giving it a more negative net charge. The positively charged antibiotic gentamicin and cationic antimicrobial peptides such as beta-defensins and CAP18 were more effective against the mutants. The levels of moenomycin and vancomycin binding to intact cells was also greater in the mutants than in the wild type, while the binding affinity was not altered when cells boiled in sodium dodecyl sulfate were used, indicating that both agents had higher affinities for the negatively charged membranes of the mutants. Therefore, the membrane charge of S. aureus appears to influence the efficacies of moenomycin, vancomycin, and other cationic antimicrobial agents

    Strains and plasmids used in this study.

    No full text
    <p>Strains and plasmids used in this study.</p
    corecore