154 research outputs found
Recommended from our members
Membrane-domain mutations in respiratory complex I impede catalysis but do not uncouple proton pumping from ubiquinone reduction.
Respiratory complex I [NADH:ubiquinone (UQ) oxidoreductase] captures the free energy released from NADH oxidation and UQ reduction to pump four protons across an energy-transducing membrane and power ATP synthesis. Mechanisms for long-range energy coupling in complex I have been proposed from structural data but not yet evaluated by robust biophysical and biochemical analyses. Here, we use the powerful bacterial model system Paracoccus denitrificans to investigate 14 mutations of key residues in the membrane-domain Nqo13/ND4 subunit, defining the rates and reversibility of catalysis and the number of protons pumped per NADH oxidized. We reveal new insights into the roles of highly conserved charged residues in lateral energy transduction, confirm the purely structural role of the Nqo12/ND5 transverse helix, and evaluate a proposed hydrated channel for proton uptake. Importantly, even when catalysis is compromised the enzyme remains strictly coupled (four protons are pumped per NADH oxidized), providing no evidence for escape cycles that circumvent blocked proton-pumping steps
A ternary mechanism for NADH oxidation by positively charged electron acceptors, catalyzed at the flavin site in respiratory complex I
AbstractThe flavin mononucleotide in complex I (NADH:ubiquinone oxidoreductase) catalyzes NADH oxidation, O2 reduction to superoxide, and the reduction of several ‘artificial’ electron acceptors. Here, we show that the positively-charged electron acceptors paraquat and hexaammineruthenium(III) react with the nucleotide-bound reduced flavin in complex I, by an unusual ternary mechanism. NADH, ATP, ADP and ADP-ribose stimulate the reactions, indicating that the positively-charged acceptors interact with their negatively-charged phosphates. Our mechanism for paraquat reduction defines a new mechanism for superoxide production by complex I (by redox cycling); in contrast to direct O2 reduction the rate is stimulated, not inhibited, by high NADH concentrations
Recommended from our members
Comment on "Protein assemblies ejected directly from native membranes yield complexes for mass spectrometry".
Chorev et al (Reports, 16 November 2018, p. 829) describe mass spectrometry on mitochondrial membrane proteins ionized directly from their native environment. However, the assignments made to measured masses are incorrect or inconclusive and lack experimental validation. The proteins are not in their "native" condition: They have been stripped of tightly bound lipids, and the complexes are fragmented or in physiologically irrelevant oligomeric states
Respiratory Complex I in Bos taurus and Paracoccus denitrificans Pumps Four Protons across the Membrane for Every NADH Oxidized.
Respiratory complex I couples electron transfer between NADH and ubiquinone to proton translocation across an energy-transducing membrane to support the proton-motive force that drives ATP synthesis. The proton-pumping stoichiometry of complex I (i.e. the number of protons pumped for each two electrons transferred) underpins all mechanistic proposals. However, it remains controversial and has not been determined for any of the bacterial enzymes that are exploited as model systems for the mammalian enzyme. Here, we describe a simple method for determining the proton-pumping stoichiometry of complex I in inverted membrane vesicles under steady-state ADP-phosphorylating conditions. Our method exploits the rate of ATP synthesis, driven by oxidation of NADH or succinate with different sections of the respiratory chain engaged in catalysis as a proxy for the rate of proton translocation and determines the stoichiometry of complex I by reference to the known stoichiometries of complexes III and IV. Using vesicles prepared from mammalian mitochondria (from Bos taurus) and from the bacterium Paracoccus denitrificans, we show that four protons are pumped for every two electrons transferred in both cases. By confirming the four-proton stoichiometry for mammalian complex I and, for the first time, demonstrating the same value for a bacterial complex, we establish the utility of P. denitrificans complex I as a model system for the mammalian enzyme. P. denitrificans is the first system described in which mutagenesis in any complex I core subunit may be combined with quantitative proton-pumping measurements for mechanistic studies
Recommended from our members
Paracoccus denitrificans: a genetically tractable model system for studying respiratory complex I.
Mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a crucial metabolic enzyme that couples the free energy released from NADH oxidation and ubiquinone reduction to the translocation of four protons across the inner mitochondrial membrane, creating the proton motive force for ATP synthesis. The mechanism by which the energy is captured, and the mechanism and pathways of proton pumping, remain elusive despite recent advances in structural knowledge. Progress has been limited by a lack of model systems able to combine functional and structural analyses with targeted mutagenic interrogation throughout the entire complex. Here, we develop and present the α-proteobacterium Paracoccus denitrificans as a suitable bacterial model system for mitochondrial complex I. First, we develop a robust purification protocol to isolate highly active complex I by introducing a His6-tag on the Nqo5 subunit. Then, we optimize the reconstitution of the enzyme into liposomes, demonstrating its proton pumping activity. Finally, we develop a strain of P. denitrificans that is amenable to complex I mutagenesis and create a catalytically inactive variant of the enzyme. Our model provides new opportunities to disentangle the mechanism of complex I by combining mutagenesis in every subunit with established interrogative biophysical measurements on both the soluble and membrane bound enzymes
Recommended from our members
Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase.
CO2 and formate are rapidly, selectively, and efficiently interconverted by tungsten-containing formate dehydrogenases that surpass current synthetic catalysts. However, their mechanism of catalysis is unknown, and no tractable system is available for study. Here, we describe the catalytic properties of the molybdenum-containing formate dehydrogenase H from the model organism Escherichia coli (EcFDH-H). We use protein film voltammetry to demonstrate that EcFDH-H is a highly active, reversible electrocatalyst. In each voltammogram a single point of zero net current denotes the CO2 reduction potential that varies with pH according to the Nernst equation. By quantifying formate production we show that electrocatalytic CO2 reduction is specific. Our results reveal the capabilities of a Mo-containing catalyst for reversible CO2 reduction and establish EcFDH-H as an attractive model system for mechanistic investigations and a template for the development of synthetic catalysts.This is the final version. It was first published by ACS at http://pubs.acs.org/doi/abs/10.1021/ja508647
Molecular features of biguanides required for targeting of mitochondrial respiratory complex I and activation of AMP-kinase.
BACKGROUND: The biguanides are a family of drugs with diverse clinical applications. Metformin, a widely used anti-hyperglycemic biguanide, suppresses mitochondrial respiration by inhibiting respiratory complex I. Phenformin, a related anti-hyperglycemic biguanide, also inhibits respiration, but proguanil, which is widely used for the prevention of malaria, does not. The molecular structures of phenformin and proguanil are closely related and both inhibit isolated complex I. Proguanil does not inhibit respiration in cells and mitochondria because it is unable to access complex I. The molecular features that determine which biguanides accumulate in mitochondria, enabling them to inhibit complex I in vivo, are not known. RESULTS: Here, a family of seven biguanides are used to reveal the molecular features that determine why phenformin enters mitochondria and inhibits respiration whereas proguanil does not. All seven biguanides inhibit isolated complex I, but only four of them inhibit respiration in cells and mitochondria. Direct conjugation of a phenyl group and bis-substitution of the biguanide moiety prevent uptake into mitochondria, irrespective of the compound hydrophobicity. This high selectivity suggests that biguanide uptake into mitochondria is protein mediated, and is not by passive diffusion. Only those biguanides that enter mitochondria and inhibit complex I activate AMP kinase, strengthening links between complex I and the downstream effects of biguanide treatments. CONCLUSIONS: Biguanides inhibit mitochondrial complex I, but specific molecular features control the uptake of substituted biguanides into mitochondria, so only some biguanides inhibit mitochondrial respiration in vivo. Biguanides with restricted intracellular access may be used to determine physiologically relevant targets of biguanide action, and for the rational design of substituted biguanides for diverse clinical applications
- …