17 research outputs found

    Broadband dielectric spectroscopy of glucose aqueous solution: Analysis of the hydration state and the hydrogen bond network.

    Get PDF
    Recent studies of saccharides' peculiar anti-freezing and anti-dehydration properties point to a close association with their strong hydration capability and destructuring effect on the hydrogen bond (HB) network of bulk water. The underlying mechanisms are, however, not well understood. In this respect, examination of the complex dielectric constants of saccharide aqueous solutions, especially over a broadband frequency region, should provide interesting insights into these properties, since the dielectric responses reflect corresponding dynamics over the time scales measured. In order to do this, the complex dielectric constants of glucose solutions between 0.5 GHz and 12 THz (from the microwave to the far-infrared region) were measured. We then performed analysis procedures on this broadband spectrum by decomposing it into four Debye and two Lorentz functions, with particular attention being paid to the β relaxation (glucose tumbling), δ relaxation (rotational polarization of the hydrated water), slow relaxation (reorientation of the HB network water), fast relaxation (rotation of the non-HB water), and intermolecular stretching vibration (hindered translation of water). On the basis of this analysis, we revealed that the hydrated water surrounding the glucose molecules exhibits a mono-modal relaxational dispersion with 2-3 times slower relaxation times than unperturbed bulk water and with a hydration number of around 20. Furthermore, other species of water with distorted tetrahedral HB water structures, as well as increases in the relative proportion of non-HB water molecules which have a faster relaxation time and are not a part of the surrounding bulk water HB network, was found in the vicinity of the glucose molecules. These clearly point to the HB destructuring effect of saccharide solutes in aqueous solution. The results, as a whole, provide a detailed picture of glucose-water and water-water interactions in the vicinity of the glucose molecules at various time scales from sub-picosecond to hundreds of picoseconds

    Effect of annual rings on transmission of 100 GHz millimeter waves through wood

    Get PDF
    For the application of millimeter wave (MMW) technique to nondestructive evaluation of wood, the effect of annual rings on the behavior of a 100 GHz MMW transmitted through wood was examined. The complex amplitude was measured for 2 mm thick flat- (LT) and quarter-sawn (LR) specimens of several species with different annual ring structures at 11 % moisture content, of which the density distribution was measured using X-ray radiography. For the LT specimens of all species and the LR specimens with small density fluctuation or with earlywood width smaller than the wavelength of the MMW (=3 mm), the amplitude and phase of the transmitted wave were similar to those of the wave without a specimen. For the LR specimen with large density fluctuation and with earlywood width close to or larger than the wavelength, the amplitude and phase were different from those of the wave without a specimen. All the measured complex amplitudes were well expressed using a diffraction model. It was concluded that the MMW is deformed by the density distribution, and then its components with periods shorter than the wavelength by diffraction are attenuated

    Dielectric anisotropy of oven- and air-dried wood evaluated using a free space millimeter wave

    Get PDF
    To evaluate the dielectric anisotropy caused by wood structure at a millimeter wave frequency of 100 GHz, the dielectric parameters for flat-sawn specimens of nine wood species at 0 and 11 % moisture content (MC) were measured using a free space method devised for reducing the multiple reflections under an electric field of millimeter waves parallel to longitudinal and tangential directions of wood, and those in radial direction were estimated using a conventional approximation theory. The dielectric parameters in the tangential and radial directions were almost identical and constantly smaller than those in the longitudinal direction. All the dielectric parameters increased with wood density and were larger at 11 than 0 % MC. The dielectric parameters in the longitudinal and transverse directions and the dielectric anisotropy between them were well fitted to the regression lines based on a dielectric mixture model composed of pores and dielectric isotropic wood substance, and a parallel capacitor and Lichtenecker’s exponential formulas were employed to represent the dielectric parameters of the mixture in the longitudinal and transverse directions, respectively. It was concluded that the dielectric anisotropy at 100 GHz is caused by the pore alignment and that the dielectric parameters are almost unaffected by anatomical structures, such as the rays. It was also confirmed that the free space method was effective for the measurement of the dielectric parameters for the flat-sawn specimens

    Wearable Microfluidic Sensor for the Simultaneous and Continuous Monitoring of Local Sweat Rates and Electrolyte Concentrations

    No full text
    Temperature elevation due to global warming increases the risks of dehydration, which can induce heat-related illness. Proper rehydration with appropriate amounts of water and electrolytes is essential to aid body fluid homeostasis. Wearable sweat sensors which can monitor both the sweat rate and sweat electrolyte concentration may be an effective tool for determining appropriate rehydration. Here, we developed a novel potentially wearable sensor that can monitor both the local sweat rate and sweat electrolyte concentration continuously. The new device includes a system with a short microfluidic pathway that guides the sweat appearing on the skin to a small space in the device to form a quantifiable droplet. The sweat rate is assessed from the time for the droplet to appear and droplet volume, while an integrated electric sensor detects the sodium chloride concentration in each sweat droplet. We demonstrated that this new device could record both the flow rates of artificial sweat and its sodium chloride concentration in ranges of human sweating with an accuracy within ±10%. This is equivalent to the accuracy of commercially available sweat rate meters and sweat ion sensors. The present study provides a new perspective for the design of wearable sensors that can continuously monitor sweat rates and sweat electrolyte concentrations for potential application to a healthcare device

    Wearable Microfluidic Sensor for the Simultaneous and Continuous Monitoring of Local Sweat Rates and Electrolyte Concentrations

    No full text
    Temperature elevation due to global warming increases the risks of dehydration, which can induce heat-related illness. Proper rehydration with appropriate amounts of water and electrolytes is essential to aid body fluid homeostasis. Wearable sweat sensors which can monitor both the sweat rate and sweat electrolyte concentration may be an effective tool for determining appropriate rehydration. Here, we developed a novel potentially wearable sensor that can monitor both the local sweat rate and sweat electrolyte concentration continuously. The new device includes a system with a short microfluidic pathway that guides the sweat appearing on the skin to a small space in the device to form a quantifiable droplet. The sweat rate is assessed from the time for the droplet to appear and droplet volume, while an integrated electric sensor detects the sodium chloride concentration in each sweat droplet. We demonstrated that this new device could record both the flow rates of artificial sweat and its sodium chloride concentration in ranges of human sweating with an accuracy within ±10%. This is equivalent to the accuracy of commercially available sweat rate meters and sweat ion sensors. The present study provides a new perspective for the design of wearable sensors that can continuously monitor sweat rates and sweat electrolyte concentrations for potential application to a healthcare device

    Plasma Diagnostics of the µ10 ECR Ion Thruster Using Optical Fiber Probes

    No full text
    In order to reveal the physical processes taking place within the ECR ion thruster " µ10 ", internal plasma diagnosis is indispensable. However, the ability of metallic probes to access microwave plasmas biased at a high voltage is limited from the standpoints of he disturbance created in the electric field and electrical isolation. This study demonstrates two kinds of plasma parameter measurements using optical fibers. Firstly, an optical fiber probe is a single-mode optical fiber. It is used to guide laser into the discharge chamber in the measurement of Xe I by the laser absorption spectroscopy. The other is an EO probe to measure the electric field of microwaves. From the both results, it can be deduced that there is plasma in the waveguide in the propellant injection from a waveguide. To improve the thrust force, it is important to suppress the electron in the waveguide

    Validation of Wearable Device Consisting of a Smart Shirt with Built-In Bioelectrodes and a Wireless Transmitter for Heart Rate Monitoring in Light to Moderate Physical Work

    No full text
    Real-time monitoring of heart rate is useful for monitoring workers. Wearable heart rate monitors worn on the upper body are less susceptible to artefacts caused by arm and wrist movements than popular wristband-type sensors using the photoplethysmography method. Therefore, they are considered suitable for stable and accurate measurement for various movements. In this study, we conducted an experiment to verify the accuracy of our developed and commercially available wearable heart rate monitor consisting of a smart shirt with bioelectrodes and a transmitter, assuming a real-world work environment with physical loads. An exercise protocol was designed to light to moderate intensity according to international standards because no standard exercise protocol for the validation simulating these works has been reported. This protocol includes worker-specific movements such as applying external vibration and lifting and lowering loads. In the experiment, we simultaneously measured the instantaneous heart rate with the above wearable device and a Holter monitor as a reference to evaluate mean absolute percentage error (MAPE). The MAPE was 0.92% or less for all exercise protocols conducted. This value indicates that the accuracy of the wearable device is high enough for use in real-world cases of physical load in light to moderate intensity tasks such as those in our experimental protocol. In addition, the experimental protocol and measurement data devised in this study can be used as a benchmark for other wearable heart rate monitors for use for similar purposes

    Effect of grain direction on transmittance of 100-GHz millimeter wave for hinoki (Chamaecyparis obtusa)

    Get PDF
    The attenuation coefficients of 100-GHz millimeter waves polarized linearly were measured for cross-cut, quarter-sawn, and flat-sawn boards of hinoki (Chamaecyparis obtusa) that were 0.2–2.0 cm thick. This was done to examine the applicability of free-wave propagation theory for applying electromagnetic waves to wood. It was found that the transmittance of a millimeter wave through the specimen boards was lower when the fiber direction of a board was parallel to the direction of the electric field of the incident wave than when the fiber direction was perpendicular to the electric field, and there was little difference in the transmittance between the tangential and radial directions for the former case. These findings can be quantitatively explained by using propagation theory and the dielectric properties of wood
    corecore