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Abstract 

The attenuation coefficients of 100 GHz millimeter-wave polarized linearly were 

measured for cross-cut, quarter-sawn, and flat-sawn boards of hinoki (Chamaecyparis 

obtusa) that were 0.2 to 2.0 cm thick in order to examine the applicability of free-wave 

propagation theory for applying electro-magnetic waves to wood. It was found that the 

transmittance of a millimeter wave through the specimen boards was smaller for cases 

where the fiber direction of a board was parallel to the direction of the electric field of 

the incident wave than for those where the fiber direction was perpendicular to the 

electric field, and there was little difference in the transmittance between the tangential 

and radial directions for the former case. These findings were quantitatively 

explainable by using the propagation theory and the dielectric properties of wood. 



Introduction 

The millimeter-wave technique, in which the electromagnetic waves in the frequency 

range of 30 to 300 GHz are used, has only recently been developed and is expected to 

be used for not only communications but also imaging in dielectric materials
1-5

. The 

millimeter-wave imaging technique can be used in the nondestructive testing of wood, 

and it has a higher resolution than the microwave technique which has been used for 

the nondestructive evaluation of wood. There have been, however, only a few basic 

studies
10,11

 on the dielectric properties of wood in the millimeter-wave frequency range. 

These dielectric properties are generally characterized by their parameters such as their 

complex permittivity or attenuation and phase coefficients. To explain the dielectric 

property of orthotropic materials such as wood, these parameters need to be in three 

directions along the principal axes of the anisotropy are required. 

In previous studies
6-9

, the dielectric properties of wood have been measured by using 

methods in a microwave frequency range below 30 GHz: 

・Detection of microwaves transmitted through the waveguides filled with wood
6,7

, 

・Detection of free microwave beams transmitted through and reflected in wood
8,9

.     

The former method is better than the latter in terms of accuracy when measuring the 

permittivity, because the electric field is more stable in and around the specimen in the 

waveguide, and the free electric field used in the latter method is often unstable 

because of scattering and diffraction of the microwave induced by the component of 

the apparatus, especially in the microwave frequency range. The latter method is 

preferable to the nondestructive evaluation of wood, especially when using two- or 

three-dimensional imaging, because the local permittivity in wood can be measured by 

using the latter method, while only the average permittivity of the whole specimen is 

obtained by the former method. In the millimeter wave frequency range, it is difficult 

to evaluate the dielectric properties of wood using the former method since a cross 

section of the waveguide, which is usually only a few millimeters square, is too small 

to ignore the effect of the heterogeneity of the wood, such as the annual ring structure. 

The latter method is, therefore, required for obtaining a more accurate evaluation of the 

dielectric properties of wood in the millimeter frequency range. 

There have been two previous studies for the measurement of the dielectric 

properties of wood in the frequency ranges that include millimeter waves. Reid et al.
10

 

measured the dielectric properties of air-dried spruce in a frequency range of 100 GHz 

to 1.6 THz by using a teraherz pulse wave. Oyama et al.
11

 measured the dependence of 

the dielectric properties of wood on its density and moisture content. They, however, 

did not discuss the anisotropy of the dielectric properties of the wood. 



For the anisotropy of the dielectric properties of wood, Torgovnikov
12

 suggested that 

the difference in dielectric properties of wood between the radial and tangential 

directions decreases with an increase in frequency above the microwave frequency 

range. This has, however, not been verified through experimentation. 

In this paper, the attenuation and phase coefficients of hinoki (Japanese cypress), in 

longitudinal, radial, and tangential directions for quarter-sawn, flat-sawn, and cross-cut 

boards were evaluated while taking into account the effect of the anisotropy of the 

wood on its dielectric properties. A 100 GHz free electromagnetic wave, which is a 

representative frequency of a millimeter wave, was used on the basis of the behavior of 

the electromagnetic wave in wood as an orthotropic material. Furthermore, the 

dependency of the transmittance of the millimeter wave through hinoki in the grain 

direction was discussed by using the propagation theory with the attenuation and phase 

coefficients in order to examine the applicability of the propagation theory to wood. 

 

Theory 

Wood is generally orthotropic in permittivity, and the three principal axes of the 

anisotropy are the fiber direction (L), the radial direction (R), and the tangential 

direction (T). These three directions can be used to explain the permittivity of wood in 

an arbitrary direction. Let the principal axes of anisotropy correspond to the three 

rectangular coordinate axes (X, Y, Z) that describe the rectangular parallelepiped 

specimen. A millimeter wave is treated as a free electromagnetic wave that transmits in 

the z direction and that is polarized linearly in the x direction. The relationship between 

the coordinate axes for the electromagnetic wave and the specimen is shown in Fig. 1. 

By letting the z-axis be parallel to the Z-axis, the angle between the x- and X-axes,  , 

is equal to that between the y- and Y-axes. Let the thickness of the specimen be d  and 

the electric fields before and after the penetration through the specimen be 0E  and E , 

respectively. If the heterogeneity of a wood specimen such as the annual ring structure 

could be ignored, the transmittance, P, can be formulated by using Eq. 1
10

, 
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where X , Y , X , and Y  are the attenuation and the phase coefficients in the X 

and Y directions, respectively; and t  is the product of the Fresnel transmission 

coefficients of the wood-to-air and air-to-wood interfaces and is regarded as a constant, 

though it depends on  . If x is parallel or perpendicular to X, or   is equal to 0° or 

90°, Eq. 1 is rewritten as follows: 
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where PX and PY are the transmittances in the X and Y directions, respectively. These 

equations imply that the dependences of P on d in the X and Y directions are affected 

by the attenuation coefficients in the X and Y directions, respectively.  

 

Experimental 

Apparatuses 

The set-up for the millimeter wave transmitter and receiver system arranged in a 

coordinate system ),,( zyx  is shown in Fig. 2. A Gunn diode was used to generate the 

millimeter wave at an average output power of 10 mW at 100 GHz. The output signal 

from the diode was modulated by a PIN-diode. The millimeter wave polarized linearly 

in the x direction was radiated in the z direction from a horn antenna and was 

transformed into a parallel beam using a plano-convex Teflon lens that is 50 mm in 

diameter and has a 50 mm focal length. The beam was focused onto a sensor with 

another plano-convex lens that was 50 mm in diameter and had a 100 mm focal length. 

The sensor received the electric field component parallel to the x direction. The 

received wave signal was processed in a lock-in amplifier (Stanford Research Systems 

Model SR850 DSP). The magnitude of the electric field of the millimeter wave was 

obtained as a voltage at the lock-in amplifier. The positions and the directions of the 

lenses in Fig. 2 were determined so that the gain of the millimeter wave reached 

maximum. 

The distribution of the relative magnitude of the beam on the xy plane at positions 

(A) and (B) between the two plano-convex lenses (Fig. 2) is shown in Fig. 3. This 

distribution was obtained by scanning by using the sensor mentioned above on the xy 

planes at positions (A) and (B). Figure 3 shows that there is no significant difference in 

the distribution of the beam amplitude between (A) and (B) and a specimen set 

between (A) and (B) is irradiated on an area that was 40 mm in diameter with 

millimeter waves. It was confirmed that the distributions obtained at the positions other 

than (A) and (B) were almost the same as those in Fig. 3. 

The transmittance of a millimeter wave was measured for wood specimens that were 

set between (A) and (B) in such a manner that their major faces were perpendicular to 

the beam. The transmittance P was estimated according to the right side of Eq. 1. 

 



Specimens 

Cross-cut (TR, parallel to TR plane), quarter-sawn (LR), and flat-sawn (LT) boards 

at nominal thicknesses of 0.2, 0.3, 0.5, 0.9, 1.5, and 2.0 cm were prepared from the 

heartwood of a hinoki (Japanese cypress, Chamaecyparis obtusa) wood under air-dry 

conditions (MC = 8 %). The quarter- and flat-sawn boards were cut from a piece of 

lumber, of which the average air-dry density was 347 kg/m
3
, and the cross-cut boards 

were cut from another piece of lumber, 383 kg/m
3
. The clear hinoki boards were used 

because they are straight-grained, show the small difference in density between early- 

and latewood, and adequately satisfy the assumption in theory that the heterogeneity of 

the specimen such as the annual ring structure was ignored. 

As shown in Fig. 4, the annual ring deviation angle, a , was defined as the angle 

between the tangential direction of the wood specimen and the direction of the electric 

field of the incident wave (x direction) for cross-cut boards, and the fiber deviation 

angle, f , as the angle between the fiber direction and the x direction for quarter- and 

flat-sawn boards. 

The principal axes X, Y, and Z (or z) of the anisotropy and the angle   of the 

specimen mentioned in Theory correspond to T, R, L, and a  for cross-cut boards, L, 

R, T, and f  for quarter-sawn boards, and L, T, R, and f  for flat-sawn boards, 

respectively. 

 

Measurement of transmittance 

To examine the validity of the attenuation properties given by Eqs. 2 and 3, the 

transmittance P for each board of different thicknesses d  was measured at θ = 0° and 

180° and at θ = 90° and 270°, for cross-cut, quarter-sawn, and flat-sawn boards. 

Furthermore, to examine the validity of the anisotropy given by Eq. 1, the 

transmittance P  was measured at intervals of 15° of the fiber deviation angle f  or 

the annual ring deviation angle a  from 0° to 360°. 

 

Results and Discussion 

Estimation of attenuation coefficient 

Figures 5, 6, and 7 show the relations between the transmittance P and the thickness 

of specimen d for cross-cut, quarter-sawn, and flat-sawn boards, respectively. In these 

figures,  21ln P  shows a good linear relationship to d  for all boards, which is 

consistent with the theory shown as Eqs. 2 and 3. Some irregularities in Figs. 5-7 could 

be due to standing wave formation, which results from the interference between the 

incident and reflected waves, probably including the components of multiple 



reflections. The fact the lines in Figs. 5-7 do not pass through the origin could be also 

due to the reflections. The slopes and intercepts of the regression lines in Figs. 5-7 

were used to obtain the values of   and  21ln t  for each principal axis of the 

anisotropy, respectively (Figs. 8 and 9). Figure 8 shows that there is little difference in 

L  between the quarter- and flat-sawn boards and that R  and T  are almost 

identical and smaller than L . The values of R  and T  for cross-cut boards are 

almost identical and larger than those for the quarter- and flat-sawn boards. This is 

probably due to the fact that the average air-dry density of cross-cut boards was larger 

than that of quarter- and flat-sawn boards. These findings support Torgovnikov’s 

prediction
12

 that the dielectric properties of wood in the radial and tangential directions 

would be identical above the microwave frequency range. 

The ordinate intercepts of the regression lines,  21ln t  , were almost the same for 

all boards without any significant differences (Fig. 9). This implies that the Fresnel 

transmission coefficient is little affected by the fiber direction, namely that the 

influence of the anisotropy of wood on the behavior of the electromagnetic wave is 

remarkably larger in the specimen than at the boundary between the specimen and the 

air. It is, however, not worth evaluating the absolute value t  , since t   is affected by 

the component of the multiple reflection, a phenomenon that the millimeter wave 

reflects repetitively in a horn antenna to be used for the radiation and reception of the 

wave.  

 

Dependency of transmittance on fiber direction and estimation of phase coefficient 

Figures 10- 12 show the experimental and theoretical relations of the transmittance P 

to the annual ring deviation angle, a , for cross-cut boards, to the fiber deviation angle 

f  for quarter- and flat-sawn boards, respectively. The theoretical relations for each 

board were obtained by substituting the parameters in Figs. 8 and 9 for those in Eq. 1. 

The difference between two phase coefficients, YXΔ   , was estimated as the 

value that minimizes the sum of the squares of the difference between the theoretical 

( P ) and experimental ( P ) transmittances,  ΔβJ  in Eq. 4, for cross-cut, 

quarter-sawn, and flat-sawn boards. 

      
i j

jiji ΔβdPdPΔβJ
2

,,,  ,                         (4) 

where di (i = 1, 2, ∙∙∙ , 6) are the specimen thicknesses shown in Figs. 10-12, and j  (j 

= 1, 2, ∙∙∙ , 25) are the fiber or annual ring deviation angles from 0° to 360° at intervals 

of 15°. To estimate Δ , which is a periodic function, from Eq. 4, the range of Δβ  



was supposed to be 0 to 10 rad/cm, since Reid et al.
10

 reported 1.5 rad/cm for air-dry 

spruce at 100 GHz using a terahertz pulse wave. The estimated values of Δβ  and the 

corresponding values of  ΔβJ  are listed in Table. This table shows that the dielectric 

properties in the T and R directions are the same and different from those in the L 

direction. This is consistent with the findings for the attenuation coefficient   shown 

in Fig. 8 and Torgovnikov’s predictions. 

In Figs. 10-12, the plots of the experimental values of P against the fiber or annual 

ring deviation angles are shown together with the theoretical curves estimated from Eq. 

1. For the quarter- and flat-sawn boards, the transmittance periodically and widely 

fluctuated against the fiber deviation angle f , while for the cross-cut boards the 

transmittance was nearly constant over the entire annual ring deviation angle a . 

These phenomena were theoretically the same as those for the transmission of linearly 

polarized visible rays through the 1/2 and 1/4 wave plates commonly used as optical 

elements
10

. In Figs. 11 and 12 the transmittances at 0° and 180° are smaller than at 90° 

and 270°. This is due to the fact that the attenuation coefficients in fiber direction are 

significantly larger than those in transverse direction (Fig. 8). Figures 11 and 12 also 

show that the transmittances at the intermediate angles are much smaller than the 

principal angles, particularly in lower two lines. This is due to the difference between 

two phase coefficients, YXΔ   , which is called birefringence
10

. This parameter 

is related to the difference in the propagation velocity of the electric field component 

of the wave between fiber and transverse directions.  

 

Conclusion 

The dielectric properties, attenuation and phase coefficients, and the transmittance 

were evaluated in terms of the anisotropy for hinoki, Japanese cypress, using free 100 

GHz millimeter waves. The findings in this experiment were consistent with the 

general electromagnetic wave propagation theory for orthotropic materials.  

Further examination is necessary to determine the dependency of the dielectric 

properties of wood on its moisture content, density, and temperature in the millimeter 

wave frequency range, because it has been reported that the dielectric properties 

depend on these properties of wood in the microwave frequency range,
13-15

 which is 

the challenge to be solved in millimeter-wave frequency. 
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[Figure Legends] 

Fig. 1. Relation between coordinate axes (X, Y, Z) of specimen and coordinate axes (x, 

y, z) of propagation of electromagnetic waves for quarter-sawn boards.  The axes X 

and Y are parallel to the L and R directions, respectively. 

 

Fig. 2. Experimental set-up for generation and detection of millimeter-waves arranged 

in coordinate system (x, y, z). 

 

Fig. 3. Distribution of relative beam magnitude on xy plane at positions (A) and (B) in 

Fig. 2. The relative magnitude is the ratio of the x element of the electric field at a 

given point to that at the point where the maximum electric field appears. 

 

Fig. 4. Relation between electric field direction, E0, and principal axes of wood, L, R, 

and T, in coordinate system (x, y, z). a , annual ring deviation angles; f , fiber 

deviation angles. 

 

Fig. 5. Relation between thickness of specimen d and ln(1/P
2
) in T and R directions for 

cross-cut boards. P, transmittance of millimeter wave. Coefficients of determinations, 

R
2
, are 0.963 and 0.956 for T and R directions, respectively. 

 

Fig. 6. Relation between thickness of specimen d and ln(1/P
2
) in L and R directions for 

quarter-sawn boards. P, transmittance of millimeter wave. Coefficients of 

determinations, R
2
, are 0.974 and 0.965 for L and R directions, respectively. 

 

Fig. 7. Relation between thickness of specimen d and ln(1/P
2
) in L and T directions for 



flat-sawn boards. P, transmittance of millimeter wave. Coefficients of determinations, 

R
2
, are 0.979 and 0.902 for L and T directions, respectively. 

 

Fig. 8. Attenuation coefficients for each principal axis of anisotropy for quarter-sawn, 

flat-sawn, and cross-cut boards. 

 

Fig. 9. Intercepts of regression lines for each principal axis of anisotropy for 

quarter-sawn, flat-sawn, and cross-cut boards. 

 

Fig. 10. Relation between a  and P for cross-cut boards with thicknesses of d1 to d6. 

Numerals in parentheses refer to measured board thicknesses in cm. The solid curves 

are drawn according to Eq. 1. 

 

Fig. 11. Relation between f  and P for quarter-sawn boards with thicknesses of d1 to 

d6. Numerals in parentheses refer to measured board thicknesses in cm. The solid 

curves are drawn according to Eq. 1. 

 

Fig. 12. Relation between f  and P for flat-sawn boards with thicknesses of d1 to d6. 

Numerals in parentheses refer to measured board thicknesses in cm. The solid curves 

are drawn according to Eq. 1. 
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