1,139 research outputs found

    Method of refining 2,2-isopropylidenebis-3,5- dibromophenylene-4-oxydiethanol

    Get PDF
    A method of refining 2,2-isopropylidenebis-3,5-dibromophenylene-4-oxydiethanol is described which is characterized by recrystallization of 2,2-isopropylidenebis-3,5-dibromophenylene-4-oxydiethanol using one or more aromatic hydrocarbons such as benzene, xylene, toluene, ethylbenzene or pseudocumene

    Isolation of human β-defensin-4 in lung tissue and its increase in lower respiratory tract infection

    Get PDF
    BACKGROUND: Human β-defensin-4 (hBD-4), a new member of the β-defensin family, was discovered by an analysis of the genomic sequence. The objective of this study was to clarify hBD-4 expression in human lung tissue, along with the inducible expression in response to infectious stimuli, localization, and antimicrobial activities of hBD-4 peptides. We also investigated the participation of hBD-4 in chronic lower respiratory tract infections (LRTI) by measuring the concentrations of hBD-4 peptides in human bronchial epithelial lining fluid (ELF). METHODS: The antimicrobial activity of synthetic hBD-4 peptides against E. coli and P. aeruginosa was measured by radial diffusion and colony count assays. We identified hBD-4 in homogenated human lung tissue by reverse-phase high-performance liquid chromatography coupled with a radioimmunoassay (RIA). Localization of hBD-4 was studied through immunohistochemical analysis (IHC). We investigated the effects of lipopolysaccharide (LPS) on hBD-4 expression and its release from small airway epithelial cells (SAEC). We collected ELF from patients with chronic LRTI using bronchoscopic microsampling to measure hBD-4 concentrations by RIA. RESULTS: hBD-4 exhibited salt-sensitive antimicrobial activity against P. aeruginosa. We detected the presence of hBD-4 peptides in human lung tissue. IHC demonstrated the localization of hBD-4-producing cells in bronchial and bronchiolar epithelium. The levels of hBD-4 peptides released from LPS-treated SAECs were higher than those of untreated control cells. ELF hBD-4 was detectable in 4 of 6 patients with chronic LRTI, while the amounts in controls were all below the detectable level. CONCLUSION: This study suggested that hBD-4 plays a significant role in the innate immunity of the lower respiratory tract

    How should tracers be injected to detect for sentinel nodes in gastric cancer – submucosally from inside or subserosally from outside of the stomach?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In sentinel node (SN) detection for cases of early gastric cancer, the submucosal dye injection method appears to be more reasonable than the subserosal injection. To compare the two injection methods, we have focused on the rate of concordance between hot nodes (HNs) obtained from the radioisotope (RI) method and green nodes (GNs) obtained from the dye-guided method in addition to the number and distribution of GNs detected, and the sensitivity of metastatic detection.</p> <p>Methods</p> <p>The subjects of this study were 63 consecutive patients with gastric cancer (sT1–T2, sN0, tumor diameter ≦ 4 cm) in whom we attempted SN detection using a combination of RI and dye methods. <sup>99m</sup>Tc-tin colloid was injected a day before the surgery, and indocyanine green was injected either submucosally (n = 43) with endoscopes or subserosally (n = 20) by direct vision.</p> <p>Results</p> <p>An average of hot and green nodes (H&G: 4 ± 3 vs. 4 ± 3), hot and non-green nodes (H&NG: 2 ± 3 vs. 1 ± 2), cold and green nodes (C&G: 2 ± 2 vs. 3 ± 4), and the rate of concordance (H&G/H&G + H&NG + C&G: 45 + 27% vs. 48 ± 30%) were not significantly different between the submucosal and subserosal injection methods. The spread of GNs to tier 2 stations (24% vs. 30%) and metastatic detection sensitivity (86% vs. 100%) were also not different between the submucosal and subserosal injection methods.</p> <p>Conclusion</p> <p>The tracer injection sites do not have to be limited to the submucosa.</p

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets
    corecore