227 research outputs found
Mechanistic / mammalian target protein of rapamycin signaling in hematopoietic stem cells and leukemia
ããé²å±å¶åŸ¡ç 究æMechanistic/mammalian target protein of rapamycin (mTOR) is an evolutionarily conserved kinase that plays a critical role in sensing and responding to environmental determinants such as nutrient availability, energy sufficiency, stress, and growth factor concentration. mTOR participates in two complexes, designated mTOR complex 1 (mTORC1) and 2 (mTORC2), both of which phosphorylate multiple substrates. Recent studies have revealed that the fine-tuning activity of mTOR complexes contributes to both maintenance of hematopoietic stem cells (HSCs) and suppression of leukemogenesis. Dysregulation of mTORC1 activity results in impaired HSC homeostasis. Abnormalities of mTOR signaling are observed in many patients with leukemia and genetic studies clearly show that the leukemogenesis associated with Pten deficiency involves both mTORC1 and mTORC2. Although the several mTOR inhibitors have been developed for cancer therapy, effectiveness of the inhibitors for eradication of leukemia stem cells (LSCs) is unknown. Advances in understanding of how mTOR signaling is involved in mechanisms of normal HSC and LSC homeostasis may lead to novel therapeutic approaches that can successfully eradicate leukemia. © 2013 Japanese Cancer Association
Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species
<p>Abstract</p> <p>Background</p> <p>The recent determination of complete chloroplast (cp) genomic sequences of various plant species has enabled numerous comparative analyses as well as advances in plant and genome evolutionary studies. In angiosperms, the complete cp genome sequences of about 70 species have been determined, whereas those of only three gymnosperm species, <it>Cycas taitungensis</it>, <it>Pinus thunbergii</it>, and <it>Pinus koraiensis </it>have been established. The lack of information regarding the gene content and genomic structure of gymnosperm cp genomes may severely hamper further progress of plant and cp genome evolutionary studies. To address this need, we report here the complete nucleotide sequence of the cp genome of <it>Cryptomeria japonica</it>, the first in the Cupressaceae sensu lato of gymnosperms, and provide a comparative analysis of their gene content and genomic structure that illustrates the unique genomic features of gymnosperms.</p> <p>Results</p> <p>The <it>C. japonica </it>cp genome is 131,810 bp in length, with 112 single copy genes and two duplicated (<it>trn</it>I-CAU, <it>trn</it>Q-UUG) genes that give a total of 116 genes. Compared to other land plant cp genomes, the <it>C. japonica </it>cp has lost one of the relevant large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperms, such as <it>Cycas </it>and <it>Gingko</it>, and additionally has completely lost its <it>trn</it>R-CCG, partially lost its <it>trn</it>T-GGU, and shows diversification of <it>acc</it>D. The genomic structure of the <it>C. japonica </it>cp genome also differs significantly from those of other plant species. For example, we estimate that a minimum of 15 inversions would be required to transform the gene organization of the <it>Pinus thunbergii </it>cp genome into that of <it>C. japonica</it>. In the <it>C. japonica </it>cp genome, direct repeat and inverted repeat sequences are observed at the inversion and translocation endpoints, and these sequences may be associated with the genomic rearrangements.</p> <p>Conclusion</p> <p>The observed differences in genomic structure between <it>C. japonica </it>and other land plants, including pines, strongly support the theory that the large IRs stabilize the cp genome. Furthermore, the deleted large IR and the numerous genomic rearrangements that have occurred in the <it>C. japonica </it>cp genome provide new insights into both the evolutionary lineage of coniferous species in gymnosperm and the evolution of the cp genome.</p
é è¡å¹¹çŽ°èãªãã³ã«çœè¡ç 幹现èã®ããŒãã³ã°ãšãã®åæ 解æ
é è¡å¹¹çŽ°èããã³çœè¡ç
幹现èããŒãã³ã°ã®åè£ãšããŠã®Side Population(SP)现èã®æ€èšãè¡ã£ããSP现èã¯ãé è¡å¹¹çŽ°èã®éå£ãæ¿çž®ãããŠããããšããã®ã»ãšãã©ããG0æã«ãã现èåè£ãèµ·ãããªãç¶æ³ã«ããããšãããã«æããå€ãG-CSFã®æäžã«ãã£ãŠæ«æ¢¢è¡ã«åå¡ãããŠããé è¡å¹¹çŽ°èã§ã¯ãã®ã»ãšãã©ãSPãšããæ§è³ªã倱ã£ãŠããããšãããããªãããSPã§ã¯ãªãé è¡å¹¹çŽ°èã移æ€ãæ°ã¶æåŸã幹现èãåæ§ç¯ããåŸåã³SPãšãã圢質ãç²åŸããããšãªã©ãå€æããããã®ããšã¯ãé è¡å¹¹çŽ°èã®ç¶æ
ã«ãã£ãŠSPãšãã圢質ãç²åŸãããããããã¯å€±ããšãã£ãçŸè±¡ãããããšããããšã瀺åããŠãããããã§ãé è¡å¹¹çŽ°èãSPãšãã圢質ãç²åŸããèŠå ãæ€èšããçµæãã¹ãããŒã现èãšã®æ¥çããã®åœ¢è³ªã®ç²åŸã«åœ±é¿ãäžããããšãå€æãããäžæ¹ã掻æ§é
žçŽ ãäžæããç¶æ³ã§ã¯ãã®åœ¢è³ªã倱ãããšããã幹现èã骚é«ã®ãããã«ãããŠååšããããšã«ãã£ãŠã幹现èå
ã®æŽ»æ§é
žçŽ ãäœäžããSPãšãã圢質ãç²åŸãããšèãããããçœè¡ç
幹现èã®ç¹å®ã®ãããçœè¡ç
ã¢ãã«ç³»ã®æš¹ç«ãè©Šã¿ããé è¡å¹¹çŽ°èã«ã¬ãããŠã€ã«ã¹ãã¯ã¿ãŒã«ãŠããéºäŒåMeis1ãšHoxA9ãå°å
¥ããæŸå°ç·ç
§å°ããŠã¹ã«ç§»æ€ãããšçŽ50æ¥åŸã«ã¯éªšé«æ§çœè¡ç
ãçºçããããã®çœè¡ç
ããŠã¹ã®éªšé«ã«ã¯SPåç»ãååšãããããããªããã移æ€å®éšã«ããããããã®SPã«çœè¡ç
幹现èã¯æ¿çž®ããŠããªãããšãå€æãããä»ã®çœè¡ç
ã¢ãã«ã§ã®æ€èšãå¿
èŠã§ãããã以äžã®çµæã¯ãSP现èãå¿
ãããçœè¡ç
幹现èã®ããŒã«ãŒã«ãªãåŸãªããšããããšãæå³ããŠãããæç®çã«ããçœè¡ç
ã®èšåºæ€äœãçšããæ€èšã§ããSP现èãçœè¡ç
幹现èã§ãããã©ãããè°è«ã®åããããšããã§ããããããåŠå®ããå ±åããããä»åã®ç 究çµæã¯ãããæ¯æãããã®ã§ãããä»åŸãå¥ã®ããŒã«ãŒãæ¢çŽ¢ããããšãå¿
èŠã§ãããšèãããããWe demonstrated that side population (SP), based on FACS analysis with Hoechst33342, in c-kit+Sca-1+Lin-(KSL) cells represents a population of quiescent hematopoietic stem cells (HSCs). Cell cycle analysis with BrdU labeling showed that SP were slowly cycling in GO phase. HSCs mobilized in peripheral blood from a bone marrow niche by G-CSF or 5-FU treatment were cycling and those cycling HSCs were not in SP.HSCs in developing mice, which were cycling and expanding, were also in main population (MP). SP cells in KSL fraction were resistant to myelosuppressive stress including X-ray and 5-FU treatment which depletes cycling hematopoietic cells. Histological examination revealed that the 5-FU resistant HSCs were surrounded by bone-lining osteoblast-like cells on the surface of the bone. These data indicate that the osteoblastic zone is a niche for quiescent HSCs in bone marrow. Recently tumorigenic or tumor-initiating cells, which are called cancer stem cells, have been identified. We attempted to identify cancer stem cells by using SP fraction. We established leukemia model by retroviral infection carrying HoxA9 and Meis1. The leukemia cells included SP cells in bone marrow. However transplantation experiments did not showed the evidence showing that leukemic stem cells were enriched in SP fraction. These data suggest requirement of another markers for identification of cancer stem cells.ç 究課é¡/é åçªå·:16590964, ç 究æé(幎床):2004-2005åºå
žïŒãé è¡å¹¹çŽ°èãªãã³ã«çœè¡ç
幹现èã®ããŒãã³ã°ãšãã®åæ
解æãç 究ææå ±åæžã課é¡çªå·16590964 (KAKENïŒç§åŠç 究費å©æäºæ¥ããŒã¿ããŒã¹ïŒåœç«æ
å ±åŠç 究æïŒ)ãããæ¬æããŒã¿ã¯èè
çå ±åæžããäœ
Development of Novel Treatment Strategies Targeting Cancer Stem Cells
é沢倧åŠããé²å±å¶åŸ¡ç 究ææ¬ç 究ã§ã¯ããã埮å°ç°å¢ã·ã°ãã«ã«æ¯ãããããã幹现èæ§ç²åŸã»ç¶æã¡ã«ããºã ãç解ããããšãç®çãšãããæ¬å¹ŽåºŠã¯ãraptoréºäŒåæ¬ æããŠã¹ãçšããŠmTORè€åäœïŒã®çœè¡ç
幹现èã®å¢æ®ã»çåã«ããã圹å²ã解æããããã®çµæãçœè¡ç
幹现èç¶æã«ãããmTORè€åäœ1掻æ§ãžã®äŸå床ã¯ããããç°å¢ã®ååšäžãšéååšäžã§ã¯ã倧ããç°ãªãããšãèŠåºããããããç°å¢ã®ååšããªãç¶æ
ã§raptoréºäŒåãæ¬ æãããmTORè€åäœïŒã®æŽ»æ§ã倱ãããç¶æ
ã§ã¯ããã®å¢æ®ãçåãèããé害ãããããŸãã移æ€å®éšã«ããçäœå
ã§ã®è©äŸ¡ãè¡ã£ãå®éšã«ãããŠããæ¯èŒçåå圢質ã瀺ãçœè¡ç
现èã§ã¯ã现èæ»ãèªå°ãããmTORè€åäœïŒãžã®äŸåæ§ãé«ãããšãå€æãããäžæ¹ã§ãçœè¡ç
幹现èã¯çäœå
ã§mTORè€åäœïŒéäŸåçã«çåããŠããããšãæãããšãªã£ããèå³æ·±ãããšã«ããããã®çŽ°èã¯ãé·æçã«çåãããã®ã®æ«æ¢¢è¡äžã§ã®çœè¡ç
ã®é¡èãªå¢æ®ã¯èªããããªãã£ããããããraptoréºäŒåãå°å
¥ããããšã«ãã£ãŠãmTORè€åäœïŒã®æŽ»æ§ã埩掻ãããããšã«ãããéçåãšåæ§ã®çœè¡ç
ã®çºçãèŠãããããã®ããšãããçœè¡ç
幹现èã¯ã埮å°ç°å¢ããæ¯æãããmTORè€åäœïŒäœäžã«å¯Ÿããæµææ§ã瀺ãæªååæ§ãä¿ã€ããšãã§ãããšèãããããæ¬çŸè±¡ã¯çœè¡ç
æ²»çåŸã®åŸ®å°æ®åç
å€ãšé¡äŒŒããŠããããã®ãããªç
æ
ã§ã®çŽ°èå
mTORã·ã°ãã«ã®æå¶ç¶æ
ãšçœè¡ç
幹现èãããåæ¹ã®éèŠæ§ã瀺åãããããããã®ç 究ã«ããããã幹现èã®æ²»çæµææ§ã¡ã«ããºã ãç解ããäžã§éèŠãªç¥èŠãåŸãããšãã§ãããç 究課é¡/é åçªå·:23130507, ç 究æé(幎床):2011-04-01 â 2013-03-3
æ®éç幹现èå¶åŸ¡æ©æ§ãšè «ç现èåå
é沢倧åŠããé²å±å¶åŸ¡ç 究ææ¬ç 究ã§ã¯ãæã
ãç¬èªã«éçºãã幹现èåé¢/æšè(ãã¯ã¬ãªã¹ããã³-GFP)ã·ã¹ãã ã«ãããããçµç¹äžã®æºãšãªã现èãããã"Tumor-initiating cell"ãããã«è
«ç现èãäŸçµŠããã©ã®ãããªã·ã°ãã«ã«ãã£ãŠå¶åŸ¡ãåããŠããããæããã«ããããšãç®çãšãããå¹³æ20幎床ãŸã§ã«äœè£œãããã¯ã¬ãªã¹ããã³-GFPãã©ã³ã¹ãžã§ããã¯ããŠã¹ç±æ¥ã®è³è
«çãäœè£œã解æãããGFPã®èŒåºŠã«ãã£ãŠçŽ°èåç»ããGFPéœæ§çŽ°èããè©Šéšç®¡å
ã§ã®é«ãå¢æ®èœãæã€ããšããŸããã®çŽ°èãçäœå
ã§è³è
«çç£çèœããã£çŽ°è(Tumor-initiating cell)ã§ããããšãèªãããããã«GFPéœæ§çŽ°èãšé°æ§çŽ°èéå£ã®éºäŒåçºçŸè§£æãè¡ã£ãããã®çµæãGFPéœæ§çŽ°èã§å容äœåããã·ã³ãããŒãŒc-Metã®çºçŸãææã«é«ãããšãèªããããŸããå
ç«çµç¹ååŠæ³ã«ãããc-Metå容äœããããã®çŽ°èã§ãªã³é
žåããŠããããšãå€æããããªã¬ã³ãã§ããHGFã®äœçšã«ãããGFPéœæ§è³è
«ç现èã掻çºã«ãããªã²ã«å
ã«éèµ°ããããšã芳å¯ããããã®ããšãããè³è
«çã«ãããTumor-initiating cellã¯ãHGF/c-Metã·ã°ãã«ã«ãã£ãŠããã®çåã浞最ãå¶åŸ¡ãããŠãããšèããããããã®ã·ã¹ãã ãçšããããšã«ãã£ãŠãè³è
«çã®æªåå现èã®äœçœ®æ
å ±ãç¹ã«è¡ç®¡æ§é ãã¹ãããŒã现èãªã©ã®åŸ®å°ç°å¢ããã®å¶åŸ¡æ©æ§ãç¹ã«è
«ç现èååã«é¢ããå¶åŸ¡æ©æ§ã®è§£æãæåŸ
ããããç 究課é¡/é åçªå·:20013016, ç 究æé(幎床):2008 â 2009åºå
žïŒç 究課é¡ãæ®éç幹现èå¶åŸ¡æ©æ§ãšè
«ç现èååã課é¡çªå·20013016ïŒKAKENïŒç§åŠç 究費å©æäºæ¥ããŒã¿ããŒã¹ïŒåœç«æ
å ±åŠç 究æïŒïŒ ïŒhttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-20013016/ïŒãå å·¥ããŠäœ
Multidisciplinary research on autophagy: from molecular mechanisms to disease states
é沢倧åŠããé²å±å¶åŸ¡ç 究ææ¬ç 究ã§ã¯ããªãŒããã¡ãžãŒããã©ã®ããã«æäœåé è¡å¹¹çŽ°èã®æç«ã«å¯äžããã®ãããŸããé¢é£ããç 究ãšããŠãè
«ç幹现èã«ããããªãŒããã¡ãžãŒã®æ矩ãæããã«ããããšãç®æšãšãããæ¬å¹ŽåºŠã¯ããªãŒããã¡ãžãŒãšæ·±ãé¢äžããmTORè€åäœ1 (mTORC1)ã®çäœå
ã§ã®é è¡å¹¹çŽ°èã®èªå·±è€è£œèœã®åœ¹å²ãæããã«ãããããRhebå€ç°ããŠã¹ïŒRheb f/f CreERïŒã®éªšé«çŽ°èãæŸå°ç·ç
§å°ããŠã¹ã«ç§»æ€ãã骚é«åæ§ç¯ãå®äºããåŸã«ãã¿ã¢ãã·ãã§ã³ãæäžããéçåé è¡çŽ°èãšã®ç«¶åç¶æ
ãè©äŸ¡ããããã®çµæãRhebæ¬ æã«ããæ確ãªé è¡å¹¹çŽ°èç°åžžã¯èªããããªãããšãå€æãããããã«ãããŠã¹ã«äœç·éã®Xç·ãç
§å°ããŠãããã®çµæã«ã¯åœ±é¿ãããŠããªãã£ãããããã£ãŠãå®åžžç¶æ
ããã³å·å®³ã¹ãã¬ã¹äžã«ãããŠãRhebäŸåçãªå¹¹çŽ°èã®ç°åžžã¯èªããããªãã£ããäžæ¹ãRaptoræ¬ æã«é¢ããŠã¯é¡èãªé è¡å¹¹çŽ°èã®çŸè±¡ãèªããããããšãããmTORCïŒèªäœã¯é è¡å¹¹çŽ°èã®èªå·±è€è£œã«å¿
é ã§ããããPI3K-AKT以å€ã®äžæµã®éèŠæ§ã瀺åãããããŸãããªãŒããã¡ãžãŒã®æŽ»æ§åã«ããé è¡å¹¹çŽ°èä¿è·äœçšã®å¯èœæ§ã瀺ãããã以äžã®ããã«ãæ¬ç 究ææã¯ããªãŒããã¡ãžãŒã®åœ¹å²ãæ確ã«ããããã®æ矩ããæ
å ±ãšãªã£ãããŸããè³è
«ç幹现èã«ãããŠãATG5éºäŒåãç Žå£ããæªååæ§ã«é¢ããææšã解æããçµæããªãŒããã¡ãžãŒäžå
šç¶æ
ã¯ãéåžžç¶æ
ã§ã¯äœã圱é¿ãåãŒããªããã®ã®ãããã³ã³ããªã¢å·å®³æ§ã®æããå€ã«å¯Ÿããæåæ§ã®äº¢é²ã«å¯äžããããšãå€æãããæ¬ææã«ãããå°æ¥ãèšåºçã«æçšãªæ²»çæ³ã®éçºã«å¯äžããå¯èœæ§ã瀺åããããç 究課é¡/é åçªå·:15H01509, ç 究æé(幎床):2015-04-01 â 2017-03-3
Establishing a new paradigm of the pathogenesis of diseases through the understanding of stem cell aging
é沢倧åŠããé²å±å¶åŸ¡ç 究ææ¬ç 究ã§ã¯ïŒé«èèªé£ãšããæ é€çã¹ãã¬ã¹äžã«ãããŠïŒé è¡å¹¹çŽ°èã®æåžžæ§ãä¿ã€ããã®æ©æ§ãç解ããããšãç®çãšãããæ¬å¹ŽåºŠã¯ãæšå¹Žã«åŒãç¶ããSpred1ã®é«èèªé£ã«ããã圹å²ã解æãããé«èèªé£ã«ããéæ é€ç¶æ
ã§ã¯ïŒSpred1æ¬ æé è¡å¹¹çŽ°èã®æ©èœé害ãçããããšã芳å¯ãããããããã®ã¡ã«ããºã ã®è§£æãç®æããè
žå
现èå¢ãšã®é¢é£ãæ€èšããããŸããéçåããŠã¹ãšSpred1æ¬ æããŠã¹ã®äž¡è
ãæ®éé£ããã³é«èèªé£çŸ€ãèš4矀ã«åããããããã®ããŠã¹ããç³äŸ¿ãæ¡åãã16S rRNAã次äžä»£ã·ãŒã¯ãšã³ãµãŒã«ãŠè§£æãã现èå¢ã®å€åã芳å¯ãããäºæ³éããé«èèªé£çŸ€ã§ã¯ãã°ã©ã é°æ§èã®å¢å ã芳å¯ããããSpred1æ¬ æã®æç¡ã«ãã£ãŠãè
žå
现èå¢ã®éãã¯é¡èã«ã¯èªããããªãã£ãããã ãã詳现ã«èŠ³å¯ããããšã§ãSpred1ç¹æã®çŽ°èå¢ãååšããå¯èœæ§ã瀺ããããããä»åŸã®æ€èšãå¿
èŠã§ãããè
žå
现èå¢ãé€å»ããç®çã§ãæçå€ã«ã¯ãã«ãæäžãããšãããè¡æ¶²ç°åžžã¯éšåçã«å埩ããããŸããé è¡å¹¹çŽ°èã®æ©èœäœäžãææã«å埩ããã以äžã®çµæãããSpred1æ¬ æããŠã¹ã§ã¯ãè
žå
现èå¢ã®ç°åžžãé è¡å¹¹çŽ°èã«äœçšããé è¡ç°åžžãåŒãèµ·ãããŠãããšèããããããŸããSpred1ã¯ãç°åžžãªé£é€ïŒé«èèªé£ïŒã«ããç°å¢å€åã«å¯ŸããŠãé è¡å¹¹çŽ°èãä¿è·ãã圹å²ãæããããšãæãããšãªã£ããæ¬ã·ã°ãã«ã®è©³çŽ°ãªè§£æãšäººçºçã«å€åãããæè¡éçºãé²ããããšã«ãã£ãŠã幹现èèåã®æ¬æ
ãç解ããã¢ã³ããšã€ãžã³ã°ãªã©ã®é©æ°çå»çæè¡ã®éçºã«å¯äžã§ãããšèãããããç 究課é¡/é åçªå·:17H05638, ç 究æé(幎床):2017-04-01 â 2019-03-3
è «çæªæ§åºŠé²å±ã«ãããæªååæ§ç²åŸã¡ã«ããºã ã®è§£æ
é沢倧åŠããç 究ææ¬ç 究ã¯ãè
«ççºçãæªæ§åã¡ã«ããºã ã幹现èã®ååãæªååæ§ç¶ææ©æ§ãšã®é¢é£ãäžå¿ã«è§£ãæããããšããã³ã³ã»ããã«åºã¥ããèèœçç 究ã§ãããå
·äœçã«ã¯ãæªæ§è³è
«çã§ããã°ãªãªãŒããã¢ãã«ãšããŠãæªæ§åºŠã®é²å±ã«ãããæªååæ§ç²åŸã¡ã«ããºã ã®è§£æã«åãçµãã ãã°ãªãªãŒãgrade IIIãšgrade IVã®éãã詳现ã«æ¯èŒæ€èšããããšã«ãã£ãŠãè
«ççºçã»æªæ§åºŠé²å±ã¡ã«ããºã ã®è§£æãç®çã«ãç¥çµå¹¹çŽ°èã«ãããEGF-RASçµè·¯æŽ»æ§åç¶æ
ã«ããã现èååéåœæ±ºå®ã«å¯Ÿãã圱é¿ã解æããããã®çµæãRAS掻æ§åãç¥çµå¹¹çŽ°èã®ã°ãªã¢ç³»ãžã®ååãèªå°ããããšããã®ååèªå°ãé»å®³ããããšè
«ç圢æãä¿é²ãããããšãèŠãåºãããããã«ãæ¬ã¢ãã«ãéºäŒåæ¹å€ããŠã¹ãšçµã¿åãããããšã«ãã£ãŠãããã®ã°ãªãŒãgrade IIIãããã¯grade IVãšåãç
ççç¹åŸŽãæã€è
«çãåçŸãããããšã«æåãããæªæ§åºŠã®é«ãè
«ç(GBM,grade IV)ã»ã©ãæªååæåã®çºçŸãèŠãããäžæ¹æªæ§åºŠã®äœãè
«ç(Anaplastic astrocytoma,grade III)ã§ã¯ãååæåãé«ãçºçŸã瀺ããŠãããgrade IVã¯sphere圢æèœã瀺ãããgrade IIIã§ã¯ãã®æŽ»æ§ãèŠãããªããªã©ãæªæ§åºŠãšæªååæ§ã®çžé¢ã確èªããããã®ç 究ææã¯ãè³è
«çæªæ§é²å±ã«é¢ããå åã®åå®ã«å¯äžãããšèããããäºåŸå åã®ç¹å®ãå«ã蚺ææè¡ã®åäžãæ°èŠæ²»çæ³ã®éçºãç®æãç€ãšãªããç 究課é¡/é åçªå·:22650226, ç 究æé(幎床):2010åºå
žïŒç 究課é¡ãè
«çæªæ§åºŠé²å±ã«ãããæªååæ§ç²åŸã¡ã«ããºã ã®è§£æã課é¡çªå·22650226ïŒKAKENïŒç§åŠç 究費å©æäºæ¥ããŒã¿ããŒã¹ïŒåœç«æ
å ±åŠç 究æïŒïŒ ïŒhttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-22650226/ïŒãå å·¥ããŠäœ
幹现èèªå·±è€è£œãšå¯¿åœã»èåå¶åŸ¡ã«ãããåååºç€ã®å ±éæ§
é沢倧åŠããé²å±å¶åŸ¡ç 究ææ¬å¹ŽåºŠã¯ãå 霢ã«ãã幹现èæ©èœã®å€åã幹现èã®èåã®èŠ³ç¹ããæ€èšãããããŠã¹ã®é è¡å¹¹çŽ°èæ©èœã¯ãå 霢ããŠã¹ã«ãããŠãäœäžããªãããšã瀺ãããŠãããããã§ãé è¡å¹¹çŽ°èã®èåããé£ç¶éªšé«ç§»æ€ãè¡ãããšã«ãã£ãŠèŠ³å¯ããããã®é£ç¶ç§»æ€ã®éçšã§æŽ»æ§é
žçŽ ãäžæããããšãå€æããããã®æŽ»æ§é
žçŽ ã®äžæãšå¹¹çŽ°èæ©èœã®äœäžã«çžé¢ãèŠåºãããé£ç¶ç§»æ€åŸã®é è¡å¹¹çŽ°èã®èåãæ€èšãããšãããp16INK4a,p19ARFãšãã£ãèåã®ãã€ãªããŒã«ãŒã¯äžæããŠãããåæ§ã«æŽ»æ§é
žçŽ ãäžæããŠããATMæ¬ æããŠã¹ã®é è¡å¹¹çŽ°èã«ãããŠããããã®ããŒã«ãŒã¯äžæããŠãããã®ã®SA-b-galã®ãããªäžè¬çãªèåã®ææšã¯æ€åºãããªãã£ãããã®ããšã¯ããããã现èèåãé è¡å¹¹çŽ°èã§èµ·ãã£ãŠããªãããšãæå³ããã®ãããããã¯æ€åºã®ææšãé©åã§ã¯ãªãã®ãæ€èšããããšã®å¿
èŠæ§ãå€æãããäžæ¹ãç·è«ã§å¯¿åœããŠããããšãç¥ãããŠããDaf-16ã®åºä¹³åç©çžåéºäŒåFOXO3aã®æ¬ æè¡æ¶²çŽ°èã«ãããŠã幹现èããŒã«ãç¶æã§ããªãããšãå€æããããã®å€ç°é è¡å¹¹çŽ°èã«ãããŠã掻æ§é
žçŽ ã®äžæããã³p38MAPK掻æ§åã芳å¯ããããèå³æ·±ãããšã«ããã®p38MAPKã®æŽ»æ§åã¯å¹¹çŽ°èç¹ç°çã«èŠ³å¯ããã掻æ§é
žçŽ ã«å¯Ÿããåå¿ã¯ã幹现èã¬ãã«ãšåå现èã¬ãã«ã§ã¯æãããªçžéãããããšã瀺åããããããããªãããp16INK4aã®äžæã¯èŠãããªãã£ãããããããã®å¹¹çŽ°èããŒã«ã®æ¯æžçŸè±¡ãšçŽ°èèåã®é¢ä¿ã«ã€ããŠããã«æ€èšã®å¿
èŠãããããšãæãããšãªã£ããç 究課é¡/é åçªå·:17045029, ç 究æé(幎床):2005 â 2006åºå
žïŒã幹现èèªå·±è€è£œãšå¯¿åœã»èåå¶åŸ¡ã«ãããåååºç€ã®å
±éæ§ãç 究ææå ±åæžã課é¡çªå·17045029ïŒKAKENïŒç§åŠç 究費å©æäºæ¥ããŒã¿ããŒã¹ïŒåœç«æ
å ±åŠç 究æïŒïŒïŒhttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-17045029/)ãå å·¥ããŠäœ
- âŠ