667 research outputs found
Helium irradiation effects in polycrystalline Si, silica, and single crystal Si
Transmission electron microscopy (TEM) has been used to investigate the effects of room temperature 6 keV helium ion irradiation of a thin (≈55 nm thick) tri-layer consisting of polycrystalline Si, silica, and single-crystal Si. The ion irradiation was carried out in situ within the TEM under conditions where approximately 24% of the incident ions came to rest in the specimen. This paper reports on the comparative development of irradiation-induced defects (primarily helium bubbles) in the polycrystalline Si and single-crystal Si under ion irradiation and provides direct measurement of a radiation-induced increase in the width of the polycrystalline layer and shrinkage of the silica layer. Analysis using TEM and electron energy-loss spectroscopy has led to the hypothesis that these result from helium-bubble-induced swelling of the silicon and radiation-induced viscoelastic flow processes in the silica under the influence of stresses applied by the swollen Si layers. The silicon and silica layers are sputtered as a result of the helium ion irradiation; however, this is estimated to be a relatively minor effect with swelling and stress-related viscoelastic flow being the dominant mechanisms of dimensional change
Grain size threshold for enhanced irradiation resistance in nanocrystalline and ultrafine tungsten
Nanocrystalline metals are considered highly radiation-resistant materials due to their large grain boundary areas. Here, the existence of a grain size threshold for enhanced irradiation resistance in high-temperature helium-irradiated nanocrystalline and ultrafine tungsten is demonstrated. Average bubble density, projected bubble area and the corresponding change in volume were measured via transmission electron microscopy and plotted as a function of grain size for two ion fluences. Nanocrystalline grains of less than 35 nm size possess ∼10–20 times lower change in volume than ultrafine grains and this is discussed in terms of the grain boundaries defect sink efficienc
Effect of He-appm/DPA ratio on the damage microstructure of tungsten
In-situ ion irradiation and transmission electron microscopy has been used to examine the effects of the He appm to DPA ratio, temperature and dose on the damage structure of tungsten (W). Irradiations were performed with 15 or 60 keV He+ ions, achieving He-appm/displacements per atom (DPA) ratios of ~40,000 and ~2000, respectively, at temperatures between 500 and 1000°C to a dose of ~3 DPA. A high number of small dislocation loops with sizes around 5–20 nm and a He bubble lattice were observed for both He-appm/DPA ratios at 500°C with a bubble size ~1.5 nm. Using the g.b=0 criterion the loops were characterised as b = ±1/2 type. At 750°C bubbles do not form an ordered array and are larger in size compared to the irradiations at 500°C, with a diameter of ~3 nm. Fewer dislocation loops were observed at this temperature and were also characterised to be b = ±1/2 type. At 1000°C, no dislocation loops were observed and bubbles grew as a function of fluence attributed to vacancy mobility being higher and vacancy clusters becoming mobile
Muon spin rotation study of the magnetic penetration depth in the intercalated graphite superconductor CaC6
We report temperature- and magnetic field-dependent bulk muon spin rotation
measurements in a c-axis oriented superconductor CaC6 in the mixed state. Using
both a simple second moment analysis and the more precise analytical
Ginzburg-Landau model, we obtained a field independent in-plane magnetic
penetration depth {\lambda}ab (0) = 72(3) nm. The temperature dependencies of
the normalized muon spin relaxation rate and of the normalized superfluid
density result to be identical, and both are well represented by the clean
limit BCS model with 2\Delta/kB Tc = 3.6(1), suggesting that CaC6 is a fully
gapped BCS superconductor in the clean limit regime.Comment: Accepted for publication in PR
Negative thermal expansion of MgB in the superconducting state and anomalous behavior of the bulk Gr\"uneisen function
The thermal expansion coefficient of MgB is revealed to change
from positive to negative on cooling through the superconducting transition
temperature . The Gr\"uneisen function also becomes negative at
followed by a dramatic increase to large positive values at low temperature.
The results suggest anomalous coupling between superconducting electrons and
low-energy phonons.Comment: 5 figures. submitted to Phys. Rev. Let
In situ He<sup>+</sup> irradiation of the double solid solution (Ti<sub>0.5</sub>,Zr<sub>0.5</sub>)<sub>2</sub>(Al<sub>0.5</sub>,Sn<sub>0.5</sub>)C MAX phase:Defect evolution in the 350–800 °C temperature range
Thin foils of the double solid solution (Zr0.5,Ti0.5)2(Al0.5,Sn0.5)C MAX phase were in situ irradiated in a transmission electron microscope (TEM) up to a fluence of 1.3 × 1017 ions⋅cm-2 (∼7.5 dpa), using 6 keV He+ ions. Irradiations were performed in the 350–800 °C temperature range. In situ and post-irradiation examination (PIE) by TEM was used to study the evolution of irradiation-induced defects as function of dose and temperature. Spherical He bubbles and string-like arrangements thereof, He platelets, and dislocation loops were observed. Dislocation loop segments were found to lie in non-basal-planes. At irradiation temperatures ≥ 450 °C, grain boundary tearing was observed locally due to He bubble segregation. However, the tears did not result in transgranular crack propagation. The intensity of specific spots in the selected area electron diffraction patterns weakened upon irradiation at 450 and 500 °C, indicating an increased crystal symmetry. Above 700 °C this was not observed, indicating damage recovery at the high end of the investigated temperature range. High-resolution scanning TEM imaging performed during the PIE of foils previously irradiated at 700 °C showed that the chemical ordering and nanolamination of the MAX phase were preserved after 7.5 dpa He+ irradiation. The size distributions of the He platelets and spherical bubbles were evaluated as function of temperature and dose.</p
- …