53 research outputs found

    Tracing potential energy surfaces of electronic excitations via their transition origins: application to Oxirane

    Get PDF
    We show that the transition origins of electronic excitations identified by quantified natural transition orbital (QNTO) analysis can be employed to connect potential energy surfaces (PESs) according to their character across a widerange of molecular geometries. This is achieved by locating the switching of transition origins of adiabatic potential surfaces as the geometry changes. The transition vectors for analysing transition origins are provided by linear response time-dependent density functional theory (TDDFT) calculations under the Tamm-Dancoff approximation. We study the photochemical CO ring opening of oxirane as an example and show that the results corroborate the traditional Gomer-Noyes mechanism derived experimentally. The knowledge of specific states for the reaction also agrees well with that given by previous theoretical work using TDDFT surface-hopping dynamics that was validated by high-quality quantum Monte Carlo calculations. We also show that QNTO can be useful for considerably larger and more complex systems: by projecting the excitations to those of a reference oxirane molecule, the approach is able to identify and analyse specific excitations of a trans-2,3-diphenyloxirane molecule.Comment: 14 pages, 12 figure

    Projector self-consistent DFT+U using non-orthogonal generalized Wannier functions

    Get PDF
    We present a formulation of the density-functional theory + Hubbard model (DFT+U) method that is self-consistent over the choice of Hubbard projectors used to define the correlated subspaces. In order to overcome the arbitrariness in this choice, we propose the use of non-orthogonal generalized Wannier functions (NGWFs) as projectors for the DFT+U correction. We iteratively refine these NGWF projectors and, hence, the DFT+U functional, such that the correlated subspaces are fully self-consistent with the DFT+U ground-state. We discuss the convergence characteristics of this algorithm and compare ground-state properties thus computed with those calculated using hydrogenic projectors. Our approach is implemented within, but not restricted to, a linear-scaling DFT framework, opening the path to DFT+U calculations on systems of unprecedented size.Comment: 4 pages, 3 figures. This version (v2) matches that accepted for Physical Review B Rapid Communications on 26th July 201

    Accurate ionic forces and geometry optimization in linear-scaling density-functional theory with local orbitals

    Get PDF
    Linear scaling methods for density-functional theory (DFT) simulations are formulated in terms of localized orbitals in real space, rather than the delocalized eigenstates of conventional approaches. In local-orbital methods, relative to conventional DFT, desirable properties can be lost to some extent, such as the translational invariance of the total energy of a system with respect to small displacements and the smoothness of the potential-energy surface. This has repercussions for calculating accurate ionic forces and geometries. In this work we present results from onetep, our linear scaling method based on localized orbitals in real space. The use of psinc functions for the underlying basis set and on-the-fly optimization of the localized orbitals results in smooth potential-energy surfaces that are consistent with ionic forces calculated using the Hellmann-Feynman theorem. This enables accurate geometry optimization to be performed. Results for surface reconstructions in silicon are presented, along with three example systems demonstrating the performance of a quasi-Newton geometry optimization algorithm: an organic zwitterion, a point defect in an ionic crystal, and a semiconductor nanostructure.<br/

    Building an Environmental Sustainability Dictionary for the IT Industry

    Get PDF
    Content analysis is a commonly utilized methodology in corporate sustainability research. However, because most corporate sustainability research using content analysis is based on human coding, the research capability and the scope of the research design has limitations. The relatively recent text mining technique addresses some of the limitations of manual content analysis but its usage is often dependent upon the development of a domain specific dictionary. This paper develops an environmental sustainability dictionary in the context of corporate sustainability reports for the IT industry. In support of building said dictionary, we develop a standardized dictionary building process model that can be applied across many domains

    Vanadium dioxide : A Peierls-Mott insulator stable against disorder

    Get PDF
    Vanadium dioxide undergoes a first order metal-insulator transition at 340 K. In this work, we develop and carry out state of the art linear scaling DFT calculations refined with non-local dynamical mean-field theory. We identify a complex mechanism, a Peierls-assisted orbital selection Mott instability, which is responsible for the insulating M1_1 phase, and furthermore survives a moderate degree of disorder.Comment: 5 pages, 4 figures. Supplementary material 8 pages, 4 figures. This version (v2) matches that accepted for Physical Review Letters on 16th May 201

    Linear-scaling DFT+U with full local orbital optimization

    Get PDF
    We present an approach to the DFT+U method (Density Functional Theory + Hubbard model) within which the computational effort for calculation of ground state energies and forces scales linearly with system size. We employ a formulation of the Hubbard model using nonorthogonal projector functions to define the localized subspaces, and apply it to a local-orbital DFT method including in situ orbital optimization. The resulting approach thus combines linear-scaling and systematic variational convergence. We demonstrate the scaling of the method by applying it to nickel oxide nano-clusters with sizes exceeding 7,000 atoms.Comment: 10 pages, 4 figures. This version (v3) matches that accepted for Physical Review B on 30th January 201
    corecore