2 research outputs found

    Coencapsulation of alendronate and doxorubicin in pegylated liposomes: a novel formulation for chemoimmunotherapy of cancer

    No full text
    <p>We developed a pegylated liposome formulation of a dissociable salt of a nitrogen-containing bisphosphonate, alendronate (Ald), coencapsulated with the anthracycline, doxorubicin (Dox), a commonly used chemotherapeutic agent. Liposome-encapsulated ammonium Ald generates a gradient driving Dox into liposomes, forming a salt that holds both drugs in the liposome water phase. The resulting formulation (PLAD) allows for a high-loading efficiency of Dox, comparable to that of clinically approved pegylated liposomal doxorubicin sulfate (PLD) and is very stable in plasma stability assays. Cytotoxicity tests indicate greater potency for PLAD compared to PLD. This appears to be related to a synergistic effect of the coencapsulated Ald and Dox. PLAD and PLD differed in <i>in vitro</i> monocyte-induced IL-1β release (greater for PLAD) and complement activation (greater for PLD). A molar ratio Ald/Dox of ∼1:1 seems to provide an optimal compromise between loading efficiency of Dox, circulation time and <i>in vivo</i> toxicity of PLAD. In mice, the circulation half-life and tumor uptake of PLAD were comparable to PLD. In the M109R and 4T1 tumor models in immunocompetent mice, PLAD was superior to PLD in the growth inhibition of subcutaneous tumor implants. This new formulation appears to be a promising tool to exploit the antitumor effects of aminobisphosphonates in synergy with chemotherapy.</p

    Exploiting the Metal-Chelating Properties of the Drug Cargo for <i>In Vivo</i> Positron Emission Tomography Imaging of Liposomal Nanomedicines

    No full text
    The clinical value of current and future nanomedicines can be improved by introducing patient selection strategies based on noninvasive sensitive whole-body imaging techniques such as positron emission tomography (PET). Thus, a broad method to radiolabel and track preformed nanomedicines such as liposomal drugs with PET radionuclides will have a wide impact in nanomedicine. Here, we introduce a simple and efficient PET radiolabeling method that exploits the metal-chelating properties of certain drugs (<i>e.g.</i>, bisphosphonates such as alendronate and anthracyclines such as doxorubicin) and widely used ionophores to achieve excellent radiolabeling yields, purities, and stabilities with <sup>89</sup>Zr, <sup>52</sup>Mn, and <sup>64</sup>Cu, and without the requirement of modification of the nanomedicine components. In a model of metastatic breast cancer, we demonstrate that this technique allows quantification of the biodistribution of a radiolabeled stealth liposomal nanomedicine containing alendronate that shows high uptake in primary tumors and metastatic organs. The versatility, efficiency, simplicity, and GMP compatibility of this method may enable submicrodosing imaging studies of liposomal nanomedicines containing chelating drugs in humans and may have clinical impact by facilitating the introduction of image-guided therapeutic strategies in current and future nanomedicine clinical studies
    corecore