19 research outputs found
Fish Spawning Aggregations: Where Well-Placed Management Actions Can Yield Big Benefits for Fisheries and Conservation
Marine ecosystem management has traditionally been divided between fisheries management and biodiversity conservation approaches, and the merging of these disparate agendas has proven difficult. Here, we offer a pathway that can unite fishers, scientists, resource managers and conservationists towards a single vision for some areas of the ocean where small investments in management can offer disproportionately large benefits to fisheries and biodiversity conservation. Specifically, we provide a series of evidenced-based arguments that support an urgent need to recognize fish spawning aggregations (FSAs) as a focal point for fisheries management and conservation on a global scale, with a particular emphasis placed on the protection of multispecies FSA sites. We illustrate that these sites serve as productivity hotspots - small areas of the ocean that are dictated by the interactions between physical forces and geomorphology, attract multiple species to reproduce in large numbers and support food web dynamics, ecosystem health and robust fisheries. FSAs are comparable in vulnerability, importance and magnificence to breeding aggregations of seabirds, sea turtles and whales yet they receive insufficient attention and are declining worldwide. Numerous case-studies confirm that protected aggregations do recover to benefit fisheries through increases in fish biomass, catch rates and larval recruitment at fished sites. The small size and spatio-temporal predictability of FSAs allow monitoring, assessment and enforcement to be scaled down while benefits of protection scale up to entire populations. Fishers intuitively understand the linkages between protecting FSAs and healthy fisheries and thus tend to support their protection
Modeling and observations of high-frequency flow variability and internal waves at a Caribbean reef spawning aggregation site
The characteristics and forcing mechanisms of high-frequency flow variations (periods of minutes to days) were investigated near Gladden Spit, a reef promontory off the coast of Belize. Direct field observations and a high-resolution (50-m grid size) numerical ocean model are used to describe the flow variations that impact the initial dispersion of eggs and larvae from this site, which serves as a spawning aggregation site for many species of reef fishes. Idealized sensitivity model experiments isolate the role of various processes, such as internal waves, wind, tides, and large-scale flow variations. The acute horizontal curvature and steep topography of the reef intensify the flow, create small-scale convergence and divergence zones, and excite high-frequency oscillations and internal waves. Although the tides in this area are relatively small (âŒ10-cm amplitude), the model simulations show that tides can excite significant high-frequency flow variations near the reef, which suggests that the preference of fish to aggregate and spawn in the days following the time of full moon may not be coincidental. Even small variations in remote flows (2-5 cm s -1) due to say, meso-scale eddies, are enough to excite near-reef oscillations. Model simulations and the observations further suggest that the spawning site at the tip of the reef provides initial strong dispersion for eggs, but then the combined influence of the along-isobath flow and the westward wind will transport the eggs and larvae downstream of Gladden Spit toward less turbulent region, which may contribute to enhanced larval survival. © 2011 Springer-Verlag
Extreme flows and unusual water levels near a Caribbean coral reef: Was this a case of a perfect storm ?
Observations of currents aimed to study the flow near a spawning aggregation reef, Gladden Spit off the coast of Belize, reveal unusually strong currents on 19-20 October 2009 (the current speed was over 1 ms -1, when the mean and standard deviation are 0.2±0.12 ms -1). During this short time, the water level was raised by 60-70 cm above normal in one place, but lowered by 10-20 cm in another location just 2 km away. The temperature dropped by over 2°C within a few hours. Analyses of local and remote sensing data suggest that a rare combination of an offshore Caribbean cyclonic eddy, a short-lived local tropical storm, and a Spring tide, all occurred at the same time and creating a perfect storm condition that resulted in the unusual event. High-resolution simulations and momentum balance analysis demonstrate how the unique shape of the coral reef amplified the coastal current through nonlinear flow-topography interactions. The suggested mechanism for the water level change is different than the classical winddriven storm surge process. The study has implications for the influence of external forcing on mixing processes and physical- biological interactions near coral reefs. © Springer-Verlag 2012