2,010 research outputs found

    The laser-induced combustion of pure ammonium perchlorate and the structure of its composite propellant flames Annual report, 16 Nov. 1968 - 15 Nov. 1969

    Get PDF
    Carbon dioxide laser induced combustion of pure ammonium perchlorate and structure of composite propellant flame

    Orbit transfer rocket engine technology program: Automated preflight methods concept definition

    Get PDF
    The possibility of automating preflight engine checkouts on orbit transfer engines is discussed. The minimum requirements in terms of information and processing necessary to assess the engine'e integrity and readiness to perform its mission were first defined. A variety of ways for remotely obtaining that information were generated. The sophistication of these approaches varied from a simple preliminary power up, where the engine is fired up for the first time, to the most advanced approach where the sensor and operational history data system alone indicates engine integrity. The critical issues and benefits of these methods were identified, outlined, and prioritized. The technology readiness of each of these automated preflight methods were then rated on a NASA Office of Exploration scale used for comparing technology options for future mission choices. Finally, estimates were made of the remaining cost to advance the technology for each method to a level where the system validation models have been demonstrated in a simulated environment

    Flame zone of a composite propellant expanded by a laser source

    Get PDF
    Technique scales flame structure linearly with gas kinetic mean free path, which increases two to three orders of magnitude as pressure decreases like amount. Kinetic and transport time scales expand in proportion so that regression rates for laser-induced flames are two to three orders of magnitude slower

    Some Calculable Contributions to Entanglement Entropy

    Full text link
    Entanglement entropy appears as a central property of quantum systems in broad areas of physics. However, its precise value is often sensitive to unknown microphysics, rendering it incalculable. By considering parametric dependence on correlation length, we extract finite, calculable contributions to the entanglement entropy for a scalar field between the interior and exterior of a spatial domain of arbitrary shape. The leading term is proportional to the area of the dividing boundary; we also extract finite subleading contributions for a field defined in the bulk interior of a waveguide in 3+1 dimensions, including terms proportional to the waveguide's cross-sectional geometry; its area, perimeter length, and integrated curvature. We also consider related quantities at criticality and suggest a class of systems for which these contributions might be measurable.Comment: 4+ pages, 1 figure. v2: Some clarifications and more references; updated to resemble version published in PR

    Melting of persistent double-stranded polymers

    Full text link
    Motivated by recent DNA-pulling experiments, we revisit the Poland-Scheraga model of melting a double-stranded polymer. We include distinct bending rigidities for both the double-stranded segments, and the single-stranded segments forming a bubble. There is also bending stiffness at the branch points between the two segment types. The transfer matrix technique for single persistent chains is generalized to describe the branching bubbles. Properties of spherical harmonics are then exploited in truncating and numerically solving the resulting transfer matrix. This allows efficient computation of phase diagrams and force-extension curves (isotherms). While the main focus is on exposition of the transfer matrix technique, we provide general arguments for a reentrant melting transition in stiff double strands. Our theoretical approach can also be extended to study polymers with bubbles of any number of strands, with potential applications to molecules such as collagen.Comment: 9 pages, 7 figure

    Axion Cosmology and the Energy Scale of Inflation

    Full text link
    We survey observational constraints on the parameter space of inflation and axions and map out two allowed windows: the classic window and the inflationary anthropic window. The cosmology of the latter is particularly interesting; inflationary axion cosmology predicts the existence of isocurvature fluctuations in the CMB, with an amplitude that grows with both the energy scale of inflation and the fraction of dark matter in axions. Statistical arguments favor a substantial value for the latter, and so current bounds on isocurvature fluctuations imply tight constraints on inflation. For example, an axion Peccei-Quinn scale of 10^16 GeV excludes any inflation model with energy scale > 3.8*10^14 GeV (r > 2*10^(-9)) at 95% confidence, and so implies negligible gravitational waves from inflation, but suggests appreciable isocurvature fluctuations.Comment: 10 PRD pages, 4 figs, V3: updated to match published versio

    Attractive Casimir Forces in a Closed Geometry

    Full text link
    We study the Casimir force acting on a conducting piston with arbitrary cross section. We find the exact solution for a rectangular cross section and the first three terms in the asymptotic expansion for small height to width ratio when the cross section is arbitrary. Though weakened by the presence of the walls, the Casimir force turns out to be always attractive. Claims of repulsive Casimir forces for related configurations, like the cube, are invalidated by cutoff dependence.Comment: An updated version to coincide with the one published December 2005 in PRL. 4 pages, 2 figure
    • …
    corecore