2 research outputs found

    Modeling the Evolution of Dynamic Brain Processes During an Associative Learning Experiment

    No full text
    <p>We develop a new time series model to investigate the dynamic interactions between the nucleus accumbens and the hippocampus during an associative learning experiment. Preliminary analyses indicated that the spectral properties of the local field potentials at these two regions changed over the trials of the experiment. While many models already take into account nonstationarity within a single trial, the evolution of the dynamics across trials is often ignored. Our proposed model, the slowly evolving locally stationary process (SEv-LSP), is designed to capture nonstationarity both within a trial and across trials. We rigorously define the evolving evolutionary spectral density matrix, which we estimate using a two-stage procedure. In the first stage, we compute the within-trial time-localized periodogram matrix. In the second stage, we develop a data-driven approach that combines information from trial-specific local periodogram matrices. Through simulation studies, we show the utility of our proposed method for analyzing time series data with different evolutionary structures. Finally, we use the SEv-LSP model to demonstrate the evolving dynamics between the hippocampus and the nucleus accumbens during an associative learning experiment. Supplementary materials for this article are available online.</p

    Data_Sheet_1_Neuroprotection in late life attention-deficit/hyperactivity disorder: A review of pharmacotherapy and phenotype across the lifespan.doc

    No full text
    For decades, psychostimulants have been the gold standard pharmaceutical treatment for attention-deficit/hyperactivity disorder (ADHD). In the United States, an astounding 9% of all boys and 4% of girls will be prescribed stimulant drugs at some point during their childhood. Recent meta-analyses have revealed that individuals with ADHD have reduced brain volume loss later in life (>60 y.o.) compared to the normal aging brain, which suggests that either ADHD or its treatment may be neuroprotective. Crucially, these neuroprotective effects were significant in brain regions (e.g., hippocampus, amygdala) where severe volume loss is linked to cognitive impairment and Alzheimer’s disease. Historically, the ADHD diagnosis and its pharmacotherapy came about nearly simultaneously, making it difficult to evaluate their effects in isolation. Certain evidence suggests that psychostimulants may normalize structural brain changes typically observed in the ADHD brain. If ADHD itself is neuroprotective, perhaps exercising the brain, then psychostimulants may not be recommended across the lifespan. Alternatively, if stimulant drugs are neuroprotective, then this class of medications may warrant further investigation for their therapeutic effects. Here, we take a bottom-up holistic approach to review the psychopharmacology of ADHD in the context of recent models of attention. We suggest that future studies are greatly needed to better appreciate the interactions amongst an ADHD diagnosis, stimulant treatment across the lifespan, and structure-function alterations in the aging brain.</p
    corecore