11 research outputs found

    New Insights into the Early Stages of Nanoparticle Electrodeposition

    No full text
    Electrodeposition is an increasingly important method to synthesize supported nanoparticles, yet the early stages of electrochemical nanoparticle formation are not perfectly understood. In this paper, the early stages of silver nanoparticle electrodeposition on carbon substrates have been studied by aberration-corrected TEM, using carbon-coated TEM grids as electrochemical electrodes. In this manner we have access to as-deposited nanoparticle size distribution and structural characterization at the atomic scale combined with electrochemical measurements, which represents a breakthrough in a full understanding of the nanoparticle electrodeposition mechanisms. Whereas classical models, based upon characterization at the nanoscale, assume that electrochemical growth is only driven by direct attachment, the results reported hereafter indicate that early nanoparticle growth is mostly driven by nanocluster surface movement and aggregation. Hence, we conclude that electrochemical nulceation and growth models should be revised and that an electrochemical aggregative growth mechanism should be considered in the early stages of nanoparticle electrodeposition

    In Situ Study of the Deposition of (Ultra)thin Organic Phosphonic Acid Layers on the Oxide of Aluminum

    No full text
    The interest in self-assembling monolayer deposition on various oxide substrate surfaces is steeply increasing in the last decades. Although many studies are being performed, literature does not come with a general insight in the adsorption of these layers on oxide surfaces. Also for the deposition of phosphonic acids on aluminum oxides, there is no global consensus. In this paper, we present an original in situ analysis in order to eludicate the real layer formation mechanism. First of all, the state of the phosphonic acid molecules was determined using DOSY NMR, making sure that no structures other than free molecules were present at the concentration used. With in situ atomic force microscopy and in situ visual ellipsometry, multilayers of phosphonic acids, showing 3D island growth, were determined. It was shown that using the variation of the in situ obtained roughness and bearing ratio, together with the equivalent thickness modeled by ellipsometry, the growth of the layers occurs in situ in three different stages. They consist of increasing number of islands growth, followed by filling up the gaps between islands. At last, within the adsorption time frame measured, the islands grow further in dimensions but not in numbers. This closely corresponds with the behavior of the octylphosphonic acid films analyzed by ex situ techniques

    A Generalized Electrochemical Aggregative Growth Mechanism

    No full text
    The early stages of nanocrystal nucleation and growth are still an active field of research and remain unrevealed. In this work, by the combination of aberration-corrected transmission electron microscopy (TEM) and electrochemical characterization of the electrodeposition of different metals, we provide a complete reformulation of the Volmer–Weber 3D island growth mechanism, which has always been accepted to explain the early stages of metal electrodeposition and thin-film growth on low-energy substrates. We have developed a Generalized Electrochemical Aggregative Growth Mechanism which mimics the atomistic processes during the early stages of thin-film growth, by incorporating nanoclusters as building blocks. We discuss the influence of new processes such as nanocluster self-limiting growth, surface diffusion, aggregation, and coalescence on the growth mechanism and morphology of the resulting nanostructures. Self-limiting growth mechanisms hinder nanocluster growth and favor coalescence driven growth. The size of the primary nanoclusters is independent of the applied potential and deposition time. The balance between nucleation, nanocluster surface diffusion, and coalescence depends on the material and the overpotential, and influences strongly the morphology of the deposits. A small extent of coalescence leads to ultraporous dendritic structures, large surface coverage, and small particle size. Contrarily, full recrystallization leads to larger hemispherical monocrystalline islands and smaller particle density. The mechanism we propose represents a scientific breakthrough from the fundamental point of view and indicates that achieving the right balance between nucleation, self-limiting growth, cluster surface diffusion, and coalescence is essential and opens new, exciting possibilities to build up enhanced supported nanostructures using nanoclusters as building blocks

    The Role of Nanocluster Aggregation, Coalescence, and Recrystallization in the Electrochemical Deposition of Platinum Nanostructures

    No full text
    By using an optimized characterization approach that combines aberration-corrected transmission electron microscopy, electron tomography, and in situ ultrasmall angle X-ray scattering (USAXS), we show that the early stages of Pt electrochemical growth on carbon substrates may be affected by the aggregation, self-alignment, and partial coalescence of nanoclusters of <i>d</i> ≈ 2 nm. The morphology of the resulting nanostructures depends on the degree of coalescence and recrystallization of nanocluster aggregates, which in turn depends on the electrodeposition potential. At low overpotentials, a self-limiting growth mechanism may block the epitaxial growth of primary nanoclusters and results in loose dendritic aggregates. At more negative potentials, the extent of nanocluster coalescence and recrystallization is larger and further growth by atomic incorporation may be allowed. On one hand, this suggests a revision of the Volmer–Weber island growth mechanism. Whereas this theory has traditionally assumed direct attachment as the only growth mechanism, it is suggested that nanocluster self-limiting growth, aggregation, and coalescence should also be taken into account during the early stages of nanoscale electrodeposition. On the other hand, depending on the deposition potential, ultrahigh porosities can be achieved, turning electrodeposition in an ideal process for highly active electrocatalyst production without the need of using high surface area carbon supports

    XPS Analysis of the Surface Chemistry and Interfacial Bonding of Barrier-Type Cr(VI)-Free Anodic Oxides

    No full text
    In the transition to environmental friendly pretreatment of aerospace aluminum alloys, chromic acid anodizing (CAA) is being replaced by sulfuric acid (SAA), phosphoric acid (PAA), or phosphoric-sulfuric acid (PSA) anodizing. While generally the main concern is controlling the film morphology, such as the pore diameter, oxide-, and barrier layer thickness, little is known on how the anodic oxide chemistry affects the interactions at the interface upon adhesive bonding. To study the link between surface chemistry and interfacial bonding, featureless oxides were prepared by stopping the anodizing during the formation of the barrier layer. A model was developed to quantify the relative amounts of OH<sup>–</sup>, PO<sub>4</sub><sup>3–</sup>, and SO<sub>4</sub><sup>2–</sup> by curve-fitting the XPS data. Calculations showed that almost 40% of the surface species in PAA oxide are phosphates (PO<sub>4</sub><sup>3–</sup>), whereas about 15% are sulfates (SO<sub>4</sub><sup>2</sup>) in SAA. When both anions were present in the electrolyte, phosphate incorporation was inhibited. Studies of the interaction between this set of Cr­(VI)-free oxides and diethylenetriamine (DETA)an amine curing-agent for epoxy resinshowed that all oxides interact with the nitrogen of DETA. However, larger ratios of Lewis-like acid–base bonding between the amine electron pair and the acidic hydroxyl on phosphate surface sites were observed

    Comprehensive Study of the Electrodeposition of Nickel Nanostructures from Deep Eutectic Solvents: Self-Limiting Growth by Electrolysis of Residual Water

    No full text
    The electrodeposition of nickel nanostructures on glassy carbon was investigated in 1:2 choline chloride-urea (1:2 ChCl-U) deep eutectic solvent (DES). By combining electrochemical techniques with ex situ FE-SEM, XPS, HAADF-STEM, and EDX, the electrochemical processes occurring during nickel deposition were better understood. Special attention was given to the interaction between the solvent and the growing nickel nanoparticles. The application of sufficiently negative potential results in the electrocatlytic hydrolysis of residual water in the DES, which leads to the formation of a mixed layer of Ni/Ni­(OH)<sub>2(ads)</sub>. In addition, hydrogen bonds between hydroxide species and the DES components could be formed, quenching the growth of the nickel clusters favoring their aggregation. Due to these processes, a highly dense distribution of nickel nanostructures can be obtained within a wide potential range. Understanding the role of residual water and the interactions at the interface during metal electrodeposition from DESs is essential to produce supported nanostructures in a controllable way for a broad range of applications and technologies

    Chromatographic Properties of Minimal Aspect Ratio Monolithic Silica Columns

    No full text
    We report on a study wherein we synthesized TMOS-based silica monolithic skeletons in capillaries with an i.d. of 5 and 10 μm to produce skeleton structures with very low capillary-to-domain size aspect-ratios. These structures include the absolute minimal aspect-ratio case of a monolithic structure whose cross-section only contains a single node point. With domain-sized based reduced plate heights running as low as <i>h</i><sub>min</sub> = 1.3–1.5 for retained coumarin dyes providing a retention factor of <i>k</i> = 0.6–1.0, the study confirms the classic observation that ultralow aspect ratio columns generate a markedly lower dispersion than columns with a larger aspect ratio made in the past by Knox, Jorgenson, and Kennedy for the packed bed of spheres, but now for silica monoliths. The course of the reduced van Deemter curves, and more specifically the ratio of <i>A</i>-term versus <i>C</i>-term band broadening, could be interpreted in terms of the width and persistence length of the velocity bias zones in the columns. Considering the overall kinetic performance, it is found that the two best performing structures are also the structures with the lowest number of domains or node points, that is, with the lowest capillary-to-domain size aspect-ratio and, hence, resembling closest to the open-tubular format, which remains confirmed as the column format with the best kinetic performance. This is quantified by the fact that the minimal impedance values (order of <i>E</i><sub>min</sub> = 100) of the best performing ultralow aspect ratio monolithic columns are still significantly larger than the <i>E</i><sub>min</sub> values for the reference open-tubular columns (order of <i>E</i><sub>min</sub> = 15–20)

    A Shape-Recovery Polymer Coating for the Corrosion Protection of Metallic Surfaces

    No full text
    Self-healing polymer coatings are a type of smart material aimed for advanced corrosion protection of metals. This paper presents the synthesis and characterization of two new UV-cure self-healing coatings based on acrylated polycaprolactone polyurethanes. On a macroscopic scale, the cured films all show outstanding mechanical properties, combining relatively high Young’s modulus of up to 270 MPa with a strain at break above 350%. After thermal activation the strained films recover up to 97% of their original length. Optical and electron microscopy reveals the self-healing properties of these coatings on hot dip galvanized steel with scratches and microindentations. The temperature-induced closing of such defects restores the corrosion protection and barrier properties of the coating as shown by electrochemical impedance spectroscopy and scanning vibrating electrode technique. Therefore, such coatings are a complementary option for encapsulation-based autonomous corrosion protection systems

    A Green, Simple Chemical Route for the Synthesis of Pure Nanocalcite Crystals

    No full text
    A new, simple chemical route was developed for the synthesis of pure nanocalcite crystals by controlling the reaction of an aqueous solution of CaO and CO<sub>2</sub> gas. Results revealed formation of well-defined and pure nanocalcite crystals with controlled crystallite and particle size, without additives or organic solvents. The crystallite and particle size can be controlled, and smaller sizes are obtained by decreasing the CaO concentration and increasing the CO<sub>2</sub> flow rate. The decrease of crystallite and particle size below a certain threshold provides the nanocalcite crystal signature characteristics that can be clearly observed in XRD patterns, TEM images, FTIR spectra, Raman spectra, XPS spectra, and thermal stability measurements
    corecore