6,774 research outputs found

    The Hubble Deep Field in the Far Ultraviolet

    Full text link
    Results from a recent HST survey of field galaxies at wavelengths 1600 Angstroms and 2400 Angstroms are be presented. The data are used to constrain the fraction of Lyman-continuum radiation that escapes from galaxies at redshifts z ~ 1. The combined UV-IR photometry for HDF galaxies is also used to investigate whether low-mass starburst galaxies dominate the field-galaxy population at redshift z ~1. The relative lack of objects with the colors of faded bursts suggests that star-formation is largly quiescent rather than bursty or episodic.Comment: Presented at the ESO/ECF/STScI Workshop on Deep Fields, October 2000. 7 pages, 3 figure

    Optimal Galaxy Shape Measurements for Weak Lensing Applications Using the Hubble Space Telescope Advanced Camera for Surveys

    Full text link
    We present three-epoch multiband (V606V_{606}, i775i_{775}, z850z_{850}) measurements of galaxy shapes using the ``polar shapelet'' or Laguerre-expansions method with the Hubble Space Telescope (HSTHST) Advanced Camera for Surveys (ACS) data, obtained as part of the {\it Great Observatories Origin Deep Survey} (GOODS). We take advantage of the unique features of the GOODS/ACS Fields to test the reliability of this relatively new method of galaxy shape measurement for weak lensing analysis and to quantify the impact of the ACS Point Spread Function (PSF) on HSTHST/ACS data. We estimate the bias introduced by the sharp PSF of the ACS on shape measurement. We show that the bias in the tangential shear due to galaxy-galaxy lensing can be safely neglected provided only well-resolved galaxies are used, while it would be comparable to the signal level (1--3%) for cosmic shear measurements. These results should of be general utility in planning and analyzing weak lensing measurements with HSTHST/ACS data.Comment: 12 pages, 3 figures. Accepted for ApJ

    The Hubble Deep Fields

    Get PDF
    The Hubble space telescope observations of the northern Hubble deep field, and more recently its counterpart in the south, provide detections and photometry for stars and field galaxies to the faintest levels currently achievable, reaching magnitudes V ~ 30. Since 1995, the northern Hubble deep field has been the focus of deep surveys at nearly all wavelengths. These observations have revealed many properties of high redshift galaxies, and have contributed important data on the stellar mass function in the Galactic halo.Comment: 52 pages; includes LaTeX text file, 6 ps figures, 1 style file. To appear in Annual Review of Astronomy and Astrophysics, volume. 38. Color version of figure 3 available from "http://icarus.stsci.edu/~ferguson/research/hdf_annrev/

    Lyman Break Galaxies in the NGST Era

    Full text link
    With SIRTF and NGST in the offing, it is interesting to examine what the stellar populations of z~3 galaxies models imply for the existence and nature of Lyman-break galaxies at higher redshift. To this end, we ``turn back the clock'' on the stellar population models that have been fit to optical and infrared data of Lyman-break galaxies at z~3. The generally young ages (typically 10^8 +- 0.5 yr) of these galaxies imply that their stars were not present much beyond z=4. For smooth star-formation histories SFR(t) and Salpeter IMFs, the ionizing radiation from early star-formation in these galaxies would be insufficient to reionize the intergalactic medium at z~6, and the luminosity density at z~4 would be significantly lower than observed. We examine possible ways to increase the global star-formation rate at higher redshift without violating the stellar-population constraints at z~3.Comment: To appear in "The Mass of Galaxies at Low and High Redshift", ed. R. Bender and A. Renzini, ESO Astrophysics Symposia, Springer-Verlag 7 Pages, 2 figure

    Gravitational Lensing by Burkert Halos

    Full text link
    We investigate the gravitational lensing properties of dark matter halos with Burkert profiles. We derive an analytic expression for the lens equation and use it to compute the magnification, impact parameter and image separations for strong lensing. For the scaling relation that provides the best fits to spiral-galaxy rotation curve data, Burkert halos will not produce strong lensing, even if this scaling relation extends up to masses of galaxy clusters. Tests of a simple model of an exponential stellar disk superimposed on a Burkert-profile halo demonstrate that strong lensing is unlikely without an additional concentration of mass in the galaxy center (e.g. a bulge). The fact that most strong lenses on galactic scales are elliptical galaxies suggests that a strong central concentration of baryons is required to produce image splitting. This solution is less attractive for clusters of galaxies, which are generally considered to be dark-matter dominated even at small radii. There are three possible implications of these results: (1) dark halos may have a variety of inner profiles (2) dark matter halos may not follow a single scaling relation from galaxy scale up to cluster scale and/or (3) the splitting of images (even by clusters of galaxies) may in general be due to the central concentration of baryonic material in halos rather than dark matter.Comment: 12 pages, 4 figures. Accepted for ApJ

    A neutral hydrogen survey of the Hydra 1 cluster

    Get PDF
    We are undertaking a project to image the entire volume of the Hydra 1 cluster of galaxies in neutral hydrogen using the VLA. This involves making a series of pointings spaced 30 min. (the half power beam width) apart, each observed at three velocity settings in order to span the whole velocity range of the cluster. The purpose of this survey is to determine the true distribution, both in space and velocity, of gas-rich systems and hence, to deduce what effects a dense environment may have on the evolution of these systems. Most surveys of clusters to date have been performed on optically selected samples. However, optically selected samples may provide misleading views of the distribution of gas-rich systems, since many low surface brightness galaxies have an abundance of neutral gas (Bothun et al. 1987, Giovanelli & Haynes 1989). The Hydra project is providing the first unbiased view of the HI distribution in a cluster of galaxies. Our 5 sigma sensitivity is 4.1 x 10(exp 7) solar M/beam, (assuming H(sub 0) = 75 km s(exp -1) Mpc(exp -1)) and our velocity resolution is 42 km s(exp -1). We have a spatial resolution of 45 sec., which means that only the largest galaxies are spatially resolved enough to determine HI disk size. Our coverage is about 50 percent of the central region plus eight other fields centered on bright spirals within about 2 deg. of the center

    The Bivariate Size-luminosity Relations for Lyman Break Galaxies at z ~ 4 - 5

    Full text link
    We study the bivariate size-luminosity distribution of Lyman Break Galaxies (LBGs) selected at redshifts around 4 and 5 in GOODS and the HUDF fields. We model the size-luminosity distribution as a combination of log-normal distribution (in size) and Schechter function (in luminosity), therefore it enables a more detailed study of the selection effects. We perform extensive simulations to quantify the dropout-selection completenesses and measurement biases and uncertainties in two-dimensional size and magnitude bins, and transform the theoretical size-luminosity distribution to the expected distribution for the observed data. Using maximum-likelihood estimator (MLE), we find that the Schechter function parameters for B-dropouts are \alpha=-1.68^{+0.068}_{-0.095}, M*=-20.60^{+0.13}_{-0.17}, and \phi*=1.79^{+0.32}_{-0.52} x 10^{-3} Mpc^{-3}. The log-normal size distribution is characterized by the peak R_0=1.34^{+0.099}_{-0.108} kpc at M_{1500}=-21 mag, width \sigma_{\lnR}=0.83^{+0.046}_{-0.044}, and the slope of the size-luminosity (RL) relation \beta=0.22^{+0.058}_{-0.056}. Similarly, for V-dropouts we find \alpha=-1.74^{+0.15}_{-0.20}, M*=-20.53^{+0.24}_{-0.27}, \phi*=1.55^{+0.62}_{-0.77} x 10^{-3} Mpc}^{-3}, R_0=1.19^{+0.21}_{-0.16} kpc, \sigma_{\lnR}=0.90^{+0.15}_{-0.065}, and \beta=0.25^{+0.15}_{-0.14}. The Schechter function parameters are consistent with the values in the literature, while the size distributions are wider than expected from the angular momentum distribution of the underlying dark matter halos. The slope of the size-luminosity (RL) relation is similar to those found for local disk galaxies, but considerably shallower than local early-type galaxies.Comment: 24 pages, 19 figures, 4 tables, accepted for publication in Ap
    corecore