26 research outputs found

    Endocytosis and intracellular processing of BODIPY-sphingomyelin by murine CATH.a neurons

    Get PDF
    AbstractNeuronal sphingolipids (SL) play important roles during axonal extension, neurotrophic receptor signaling and neurotransmitter release. Many of these signaling pathways depend on the presence of specialized membrane microdomains termed lipid rafts. Sphingomyelin (SM), one of the main raft constituents, can be formed de novo or supplied from exogenous sources. The present study aimed to characterize fluorescently-labeled SL turnover in a murine neuronal cell line (CATH.a). Our results demonstrate that at 4°C exogenously added BODIPY-SM accumulates exclusively at the plasma membrane. Treatment of cells with bacterial sphingomyelinase (SMase) and back-exchange experiments revealed that 55–67% of BODIPY-SM resides in the outer leaflet of the plasma membrane. Endocytosis of BODIPY-SM occurs via caveolae with part of internalized BODIPY-fluorescence ending up in the Golgi and the ER. Following endocytosis BODIPY-SM undergoes hydrolysis, a reaction substantially faster than BODIPY-SM synthesis from BODIPY-ceramide. RNAi demonstrated that both, acid (a)SMase and neutral (n)SMases contribute to BODIPY-SM hydrolysis. Finally, high-density lipoprotein (HDL)-associated BODIPY-SM was efficiently taken up by CATH.a cells. Our findings indicate that endocytosis of exogenous SM occurs almost exclusively via caveolin-dependent pathways, that both, a- and nSMases equally contribute to neuronal SM turnover and that HDL-like particles might represent physiological SM carriers/donors in the brain

    Lysophosphatidic Acid Receptor 5 (LPA<sub>5</sub>) Knockout Ameliorates the Neuroinflammatory Response In Vivo and Modifies the Inflammatory and Metabolic Landscape of Primary Microglia In Vitro

    No full text
    Systemic inflammation induces alterations in the finely tuned micromilieu of the brain that is continuously monitored by microglia. In the CNS, these changes include increased synthesis of the bioactive lipid lysophosphatidic acid (LPA), a ligand for the six members of the LPA receptor family (LPA1-6). In mouse and human microglia, LPA5 belongs to a set of receptors that cooperatively detect danger signals in the brain. Engagement of LPA5 by LPA polarizes microglia toward a pro-inflammatory phenotype. Therefore, we studied the consequences of global LPA5 knockout (-/-) on neuroinflammatory parameters in a mouse endotoxemia model and in primary microglia exposed to LPA in vitro. A single endotoxin injection (5 mg/kg body weight) resulted in lower circulating concentrations of TNFα and IL-1β and significantly reduced gene expression of IL-6 and CXCL2 in the brain of LPS-injected LPA5-/- mice. LPA5 deficiency improved sickness behavior and energy deficits produced by low-dose (1.4 mg LPS/kg body weight) chronic LPS treatment. LPA5-/- microglia secreted lower concentrations of pro-inflammatory cyto-/chemokines in response to LPA and showed higher maximal mitochondrial respiration under basal and LPA-activated conditions, further accompanied by lower lactate release, decreased NADPH and GSH synthesis, and inhibited NO production. Collectively, our data suggest that LPA5 promotes neuroinflammation by transmiting pro-inflammatory signals during endotoxemia through microglial activation induced by LPA

    Lysophosphatidic Acid Induces Aerobic Glycolysis, Lipogenesis, and Increased Amino Acid Uptake in BV-2 Microglia

    No full text
    Lysophosphatidic acid (LPA) species are a family of bioactive lipids that transmit signals via six cognate G protein-coupled receptors, which are required for brain development and function of the nervous system. LPA affects the function of all cell types in the brain and can display beneficial or detrimental effects on microglia function. During earlier studies we reported that LPA treatment of microglia induces polarization towards a neurotoxic phenotype. In the present study we investigated whether these alterations are accompanied by the induction of a specific immunometabolic phenotype in LPA-treated BV-2 microglia. In response to LPA (1 µM) we observed slightly decreased mitochondrial respiration, increased lactate secretion and reduced ATP/ADP ratios indicating a switch towards aerobic glycolysis. Pathway analyses demonstrated induction of the Akt-mTOR-Hif1α axis under normoxic conditions. LPA treatment resulted in dephosphorylation of AMP-activated kinase, de-repression of acetyl-CoA-carboxylase and increased fatty acid content in the phospholipid and triacylglycerol fraction of BV-2 microglia lipid extracts, indicating de novo lipogenesis. LPA led to increased intracellular amino acid content at one or more time points. Finally, we observed LPA-dependent generation of reactive oxygen species (ROS), phosphorylation of nuclear factor erythroid 2–related factor 2 (Nrf2), upregulated protein expression of the Nrf2 target regulatory subunit of glutamate-cysteine ligase and increased glutathione synthesis. Our observations suggest that LPA, as a bioactive lipid, induces subtle alterations of the immunometabolic program in BV-2 microglia

    Myeloperoxidase-Derived 2-Chlorohexadecanal Is Generated in Mouse Heart during Endotoxemia and Induces Modification of Distinct Cardiomyocyte Protein Subsets In Vitro

    No full text
    Sepsis is a major cause of mortality in critically ill patients and associated with cardiac dysfunction, a complication linked to immunological and metabolic aberrations. Cardiac neutrophil infiltration and subsequent release of myeloperoxidase (MPO) leads to the formation of the oxidant hypochlorous acid (HOCl) that is able to chemically modify plasmalogens (ether-phospholipids) abundantly present in the heart. This reaction gives rise to the formation of reactive lipid species including aldehydes and chlorinated fatty acids. During the present study, we tested whether endotoxemia increases MPO-dependent lipid oxidation/modification in the mouse heart. In hearts of lipopolysaccharide-injected mice, we observed significantly higher infiltration of MPO-positive cells, increased fatty acid content, and formation of 2-chlorohexadecanal (2-ClHDA), an MPO-derived plasmalogen modification product. Using murine HL-1 cardiomyocytes as in vitro model, we show that exogenously added HOCl attacks the cellular plasmalogen pool and gives rise to the formation of 2-ClHDA. Addition of 2-ClHDA to HL-1 cardiomyocytes resulted in conversion to 2-chlorohexadecanoic acid and 2-chlorohexadecanol, indicating fatty aldehyde dehydrogenase-mediated redox metabolism. However, a recovery of only 40% indicated the formation of non-extractable (protein) adducts. To identify protein targets, we used a clickable alkynyl analog, 2-chlorohexadec-15-yn-1-al (2-ClHDyA). After Huisgen 1,3-dipolar cycloaddition of 5-tetramethylrhodamine azide (N3-TAMRA) and two dimensional-gel electrophoresis (2D-GE), we were able to identify 51 proteins that form adducts with 2-ClHDyA. Gene ontology enrichment analyses revealed an overrepresentation of heat shock and chaperone, energy metabolism, and cytoskeletal proteins as major targets. Our observations in a murine endotoxemia model demonstrate formation of HOCl-modified lipids in the heart, while pathway analysis in vitro revealed that the chlorinated aldehyde targets specific protein subsets, which are central to cardiac function

    2-Chlorohexadecanoic acid induces ER stress and mitochondrial dysfunction in brain microvascular endothelial cells

    No full text
    Peripheral leukocytes induce blood-brain barrier (BBB) dysfunction through the release of cytotoxic mediators. These include hypochlorous acid (HOCl) that is formed via the myeloperoxidase-H2O2-chloride system of activated phagocytes. HOCl targets the endogenous pool of ether phospholipids (plasmalogens) generating chlorinated inflammatory mediators like e.g. 2-chlorohexadecanal and its conversion product 2-chlorohexadecanoic acid (2-ClHA). In the cerebrovasculature these compounds inflict damage to brain microvascular endothelial cells (BMVEC) that form the morphological basis of the BBB. To follow subcellular trafficking of 2-ClHA we synthesized a ‘clickable’ alkyne derivative (2-ClHyA) that phenocopied the biological activity of the parent compound. Confocal and superresolution structured illumination microscopy revealed accumulation of 2-ClHyA in the endoplasmic reticulum (ER) and mitochondria of human BMVEC (hCMEC/D3 cell line). 2-ClHA and its alkyne analogue interfered with protein palmitoylation, induced ER-stress markers, reduced the ER ATP content, and activated transcription and secretion of interleukin (IL)−6 as well as IL-8. 2-ClHA disrupted the mitochondrial membrane potential and induced procaspase-3 and PARP cleavage. The protein kinase R-like ER kinase (PERK) inhibitor GSK2606414 suppressed 2-ClHA-mediated activating transcription factor 4 synthesis and IL-6/8 secretion, but showed no effect on endothelial barrier dysfunction and cleavage of procaspase-3. Our data indicate that 2-ClHA induces potent lipotoxic responses in brain endothelial cells and could have implications in inflammation-induced BBB dysfunction

    Myeloperoxidase and Septic Conditions Disrupt Sphingolipid Homeostasis in Murine Brain Capillaries In Vivo and Immortalized Human Brain Endothelial Cells In Vitro

    No full text
    During inflammation, activated leukocytes release cytotoxic mediators that compromise blood–brain barrier (BBB) function. Under inflammatory conditions, myeloperoxidase (MPO) is critically involved in inflicting BBB damage. We used genetic and pharmacological approaches to investigate whether MPO induces aberrant lipid homeostasis at the BBB in a murine endotoxemia model. To corroborate findings in a human system we studied the impact of sera from sepsis and non-sepsis patients on brain endothelial cells (hCMEC/D3). In response to endotoxin, the fatty acid, ceramide, and sphingomyelin content of isolated mouse brain capillaries dropped and barrier dysfunction occurred. In mice, genetic deficiency or pharmacological inhibition of MPO abolished these alterations. Studies in metabolic cages revealed increased physical activity and less pronounced sickness behavior of MPO−/− compared to wild-type mice in response to sepsis. In hCMEC/D3 cells, exogenous tumor necrosis factor α (TNFα) potently regulated gene expression of pro-inflammatory cytokines and a set of genes involved in sphingolipid (SL) homeostasis. Notably, treatment of hCMEC/D3 cells with sera from septic patients reduced cellular ceramide concentrations and induced barrier and mitochondrial dysfunction. In summary, our in vivo and in vitro data revealed that inflammatory mediators including MPO, TNFα induce dysfunctional SL homeostasis in brain endothelial cells. Genetic and pharmacological inhibition of MPO attenuated endotoxin-induced alterations in SL homeostasis in vivo, highlighting the potential role of MPO as drug target to treat inflammation-induced brain dysfunction.ISSN:1422-006

    Inhibition of ERK and JNK provides partial rescue against 2-ClHDA-induced barrier dysfunction.

    No full text
    <p>BMVEC were plated on gold microelectrodes and cultured to confluence. Barrier function of endothelial monolayers was continuously monitored by impedance sensing at 4 kHz. After stabilization, cells were challenged (arrow) with 2-ClHDA in the absence or presence of (A) 100 µM PD098059, (C) 25 µM SP600125, or (E) 25 µM SB203580. Results represent mean values ± SD from 4 independent experiments. 2-ClHDA concentrations were 5 (A) and 10 (C, E) µM. (B, D, and F) Statistical evaluation of relative barrier function at the indicated time periods post 2-ClHDA treatment in the absence or presence of the respective antagonist. Impedance was normalized to baseline and represent mean values ± SD of 4 independent experiments (**p<0.01; ***p<0.001; two-way ANOVA). (G) BMVEC were incubated with 2-ClHDA (25 µM) in the absence or presence of PD098059 (100 µM) for the times indicated. Cells were lysed, aliquots of protein lysates were subjected to SDS-PAGE and transferred to PVDF membranes. (Phospho)Specific polyclonal antibodies against ERK1/2, p38, or JNK1/2 were used as primary antibodies. Immunoreactive bands were visualized with peroxidase-conjugated secondary antibodies using the ECL-system. (H) Bar graphs represent the ratio of optical densities of immunoreactive phosphorylated proteins normalized to non-phosphorylated proteins.</p
    corecore