13 research outputs found

    Shifting body weight-fecundity relationship in a capital breeder : maternal effects on egg numbers of the autumnal moth under field conditions

    Get PDF
    In the literature, various environmental factors are described as being capable of influencing the reproductive output of insect females irrespective of their body size. Still, female body size or weight is widely used as a proxy for fecundity. In the present study, a seven-year data set on the autumnal moth, Epirrita autumnata (Borkhausen) (Lepidoptera: Geometridae), was used to analyze whether the body weight-fecundity relationship in this capital breeding, cyclic forest defoliating lepidopteran is constant across years. Ambient temperature conditions and density of conspecifics during larval development, the length of the pupal period, as well as moth densities in the parent generation were examined as factors capable of modifying the body weight-fecundity relationship. While the regression slope of potential fecundity (total egg numbers per female) on pupal mass was constant across years, the mean total egg number per given body weight (the regression intercept) was significantly different between years. This residual variance in egg numbers after controlling for the effect of pupal mass was best explained by the pooled geometrid density (autumnal and winter moths) in the parent generation. The total egg number per given body weight decreased with increasing density of geometrid moths in the parent generation. Thus, maternal density effects on offspring fecundity were found in this system. Their rather weak nature suggests, however, that this maternal effect alone does not have the potential of causing cyclic population dynamics in the autumnal moth

    Larval parasitism of the autumnal moth reduces feeding intensity on the mountain birch

    Get PDF
    Plants respond to grazing by herbivorous insects by emitting a range of volatile organic compounds, which attract parasitoids to their insect hosts. However, a positive outcome for the host plant is a necessary precondition for making the attraction beneficial or even adaptive. Parasitoids benefit plants by killing herbivorous insects, thus reducing future herbivore pressure, but also by curtailing the feeding intensity of the still living, parasitised host. In this study, the effect of parasitism on food consumption of the 5th instar larvae of the autumnal moth (Epirrita autumnata) was examined under laboratory conditions. Daily food consumption, as well as the duration of the 5th instar, was measured for both parasitised and non-parasitised larvae. The results showed that parasitism by the solitary endoparasitoid Zele deceptor not only reduced leaf consumption significantly but also hastened the onset of pupation in autumnal moth larvae. On the basis of the results, an empirical model was derived to assess the affects on the scale of the whole tree. The model suggests that parasitoids might protect the tree from total defoliation at least at intermediate larval densities. Consequently, a potential for plant–parasitoid chemical signalling appears to exist, which seems to benefit the mountain birch (Betula pubescens ssp. czerepanovii) by reducing the overall intensity of herbivore defoliation due to parasitism by this hymenopteran parasitoid

    Expansion of the winter moth outbreak range : no restrictive effects of competition with the resident autumnal moth

    Get PDF
    1. Both direct and indirect competition can have profound effects on species abundance and expansion rates, especially for a species trying to strengthen a foothold in new areas, such as the winter moth (Operophtera brumata) currently in northernmost Finland. There, winter moths have overlapping outbreak ranges with autumnal moths (Epirrita autumnata), who also share the same host, the mountain birch (Betula pubescens ssp. czerepanovii). Competitive interactions are also possible, but so far unstudied, are explanations for the observed 1–3 years phase lag between the population cycles of the two moth species. 2. In two field experiments, we studied host plant-mediated indirect inter-specific competition and direct interference/exploitation competition between autumnal and winter moths. The experimental larvae were grown either with the competing species or with the same number of conspecifics until pupation. Inter-specific competition was judged from differences in pupal mass (reflecting lifespan fecundity), larval development time and larval survival. 3. Larval performance measurements suggested that neither direct nor indirect interspecific competition with the autumnal moth reduce the growth rate of winter moth populations. Winter moths even had a higher probability of survival when reared together with autumnal moths. 4. Thus, we conclude that neither direct nor indirect inter-specific competition is capable of suppressing the spread of the winter moth outbreak range and that both are also an unlikely cause for the phase lag between the phase-locked population cycles of the two moth species

    Local outbreaks of Operophtera brumata and Operophtera fagata cannot be explained by low vulnerability to pupal predation

    Get PDF
    One of the unresolved questions in studies on population dynamics of forest Lepidoptera is why some populations at times reach outbreak densities, whereas others never do. Resolving this question is especially challenging if populations of the same species in different areas or of closely-related species in the same area are considered. The present study focused on three closely-related geometrid moth species, autumnal Epirrita autumnata, winter Operophtera brumata and northern winter moths Operophtera fagata, in southern Finland. There, winter and northern winter moth populations can reach outbreak densities, whereas autumnal moth densities stay relatively low. We tested the hypothesis that a lower vulnerability to pupal predation may explain the observed differences in population dynamics. The results obtained do not support this hypothesis because pupal predation probabilities were not significantly different between the two genera within or without the Operophtera outbreak area or in years with or without a current Operophtera outbreak. Overall, pupal predation was even higher in winter and northern winter moths than in autumnal moths. Differences in larval predation and parasitism, as well as in the reproductive capacities of the species, might be other candidates

    Responses of generalist invertebrate predators to pupal densities of autumnal and winter moths under field conditions

    Get PDF
    1. Generalist natural enemies are usually not considered as being capable of causing population cycles in forest insects, but they may influence the population dynamics of their prey in the low density cycle phase when specialist enemies are largely absent. 2. In the present field study, the total response of the generalist invertebrate predator community to experimentally established pupal densities of the closely related autumnal (Epirrita autumnata) and winter moths (Operophtera brumata) was analysed. 3. Due to the high amount of variation in the dataset, the exact shape of the response curve could not be convincingly estimated. Nevertheless, two important conclusions can be drawn from the analyses. 4. Firstly, the natural invertebrate predator community seems to become saturated at rather low densities of both autumnal and winter moth pupae. Secondly, the predator community seems to become saturated at much lower densities of autumnal than of winter moth pupae. 5. Furthermore, pupal mass was significantly negatively correlated with invertebrate predation probability in autumnal moth pupae. 6. These results indicate that differences in the predator assemblage being able to consume pupae of the two moth species, as well as different handling times, could be responsible for the substantially higher predation rates in winter than in autumnal moth pupae. 7. As a consequence, the population dynamics of autumnal moths might be less affected by generalist invertebrate predators than those of winter moths, as autumnal moths seem able to escape from the regulating influence of generalist predators at much lower population densities than winter moths

    Reversed impacts by specialist parasitoids and generalist predators may explain a phase lag in moth cycles : a novel hypothesis and preliminary field tests

    Get PDF
    Among cyclic populations of herbivores, inter-specific temporal synchrony has been attributed to both climatic factors and trophic interactions. In northern Europe, winter and autumnal moths undergo regular 9–11 year population cycles. The winter moth cycle has typically been phase-locked with that of the autumnal moth, but with a 1–3- year phase lag. We examined potential effects of natural enemies on this phase lag using field experiments and observational data. We found that larval parasitism was significantly higher in autumnal than in winter moths. Conversely, pupal predation by generalist invertebrates was clearly greater in winter than in autumnal moths. The difference in parasitism rates may contribute to the earlier collapse of the autumnal moth cycle. In addition, the phase lag may be strengthened by higher pupal mortality in winter moths in the early increase phase of the cycles. As a consequence, we put forward a hypothesis on reversed effects of natural enemies, providing a potential explanation for phase-lagged population cycles of these moth species

    Die Verteilung von Blattkäfern auf verschiedenen räumlichen Skalen: Ursachen und Konsequenzen

    No full text
    Herbivorous insects are the major link between primary producers and a multitude of animals at higher trophic levels. Elucidating the causes and consequences of their distribution patterns in the "green world" is thus essential for our understanding of numerous ecological processes on multiple spatial scales. We can ask where and why a certain herbivore can be found in the landscape, within the habitat, on which plant within the habitat and finally, where on that plant. Depending on spatial scale the distribution of herbivores is shaped by different processes (fitness considerations, physiological abilities, population dynamics, dispersal behavior, history of the landscape etc.). Scaling down from fragmented landscapes to individual host plants this thesis analyzes the distribution patterns of the strictly monophagous herbivore Cassida canaliculata Laich. (Coleoptera: Chrysomelidae), which feeds and oviposits exclusively on meadow sage, Salvia pratensis L. (Lamiales: Lamiaceae), and compares it to those of the polyphagous tansy leaf beetle Galeruca tanaceti L. (Coleoptera: Chrysomelidae), which does not oviposit on its host plants, but on dry non-host structures. The specialist Cassida canaliculata depended on all spatial scales (fragmented landscape, microhabitat and host plant individual) mainly on the distribution and quality of its single host plant species Salvia pratensis, whereas enemy-free-space - i.e. avoidance of parasitism and predation of egg clutches, larvae, and pupae - seemed to influence oviposition site choice only on the scale of the host plant individual. On this spatial scale, offspring of Cassida canaliculata had a higher chance of survival on large host plant individuals, which were also preferred for oviposition by the females. In contrast, the distribution patterns of the generalist Galeruca tanaceti was shaped by the interaction with its parasitoid regarding both microhabitat choice and egg distribution within individual host plants. On the microhabitat scale, beetles could escape from their parasitoids by ovipositing into high and dense vegetation. Regarding oviposition site choice within a host plant individual, females oviposited as high as possible in the vegetation and could thus reduce both the risk of parasitism and the probability of winter mortality. The results of my thesis show that the degree of specificity of a herbivore is of central importance for the resulting egg distribution pattern on all spatial scales.Herbivore Insekten sind das zentrale Bindeglied zwischen den Primärproduzenten und einer Vielzahl von Tieren höherer trophischer Ebenen. Daher ist es für unser Verständnis von unzähligen ökologischen Prozessen auf multiplen räumlichen Skalen essentiell, die Ursachen und Folgen ihrer Verteilungsmuster in der "grünen Welt" aufzuklären. Wir können fragen, wo und warum ein bestimmter Herbivor in der Landschaft, im Habitat, auf welcher Pflanze im Habitat und schließlich wo auf dieser Pflanze zu finden ist. In Abhängigkeit von der räumlichen Skala wird die Verteilung der Herbivoren von unterschiedlichen Prozessen (Fitness-Überlegungen, physiologische Fähigkeiten, Populationsdynamik, Dispersalverhalten, Geschichte der Landschaft etc.) geformt. Herunterskalierend von fragmentierten Landschaften zu individuellen Wirtspflanzen, habe ich in meiner Doktorarbeit die Verteilungsmuster des streng monophagen Blattkäfers Cassida canaliculata Laich. (Coleoptera: Chrysomelidae) untersucht, der ausschließlich auf Wiesensalbei, Salvia pratensis L. (Lamiales: Lamiaceae), frisst und Eier ablegt, und sie mit denen des polyphagen Rainfarnblattkäfers Galeruca tanaceti L. (Coleoptera: Chrysomelidae) verglichen, der seine Eier nicht auf Wirtspflanzen, sondern auf trockenen nicht-Wirtsstrukturen ablegt. Der Spezialist Cassida canaliculata war auf allen räumlichen Skalen (fragmentierte Landschaft, Mikrohabitat und Wirtspflanze) hauptsächlich von der Verteilung und Qualität seiner einzelnen Wirtspflanzenart Salvia pratensis abhängig, während Feind-freier Raum – d.h. die Vermeidung von Parasitierung und Prädation der Eigelege, Larven und Puppen – die Wahl des Eiablageplatzes nur bezüglich der Larvalentwicklung auf der Skala des Wirtspflanzenindividuums zu beeinflussen schien. Auf dieser räumlichen Skala hatten die Nachkommen von Cassida canaliculata eine höhere Überlebenschance auf großen Wirtspflanzenindividuen, die auch von den Weibchen zur Eiablage bevorzugt wurden. Im Gegensatz dazu wurde das Verteilungsmuster des Generalisten Galeruca tanaceti sowohl bezüglich der Wahl des Mikrohabitats als auch der Verteilung der Eigelege innerhalb individueller Pflanzen durch die Interaktionen mit seinem Eiparasitoiden geformt. Auf der Mikrohabitatebene konnten die Käfer ihren Parasitoiden dadurch entkommen, dass sie ihre Eigelege in hoher und dichter Vegetation ablegten. Bezüglich der Wahl des Eiablageplatzes innerhalb der Pflanze legten die Weibchen möglichst hoch in der Vegetation ab und konnten dadurch sowohl das Parasitierungsrisiko als auch die Wahrscheinlichkeit der Wintermortalität reduzieren. Die Ergebnisse meiner Doktorarbeit zeigen, dass der Spezifizierungsgrad eines Herbivoren für das resultierende Verteilungsmuster seiner Eigelege auf allen räumlichen Skalen von zentraler Bedeutung ist

    Enemies in low places - insects avoid winter mortality and egg parasitism by modulating oviposition height

    Get PDF
    Oviposition site selection in insects is essential in terms of low egg mortality, high offspring survival and therefore a high reproductive output. Although oviposition height could be a crucial factor for the fitness of overwintering eggs, it has rarely been investigated. In this study the oviposition height of a polyphagous leaf beetle, Galeruca tanaceti Linnaeus in different habitats and at different times of the season was examined and its effect on egg clutch mortality was recorded. The leaf beetle occurs as an occasional pest on several agricultural plants. It deposits its eggs within herbaceous vegetation in autumn. Eggs are exposed to numerous biotic and abiotic mortality factors summarized as egg parasitism and winter mortality. Oviposition height of the leaf beetle was not uniform, but changed significantly with the structure of the habitat and during the season. Mean oviposition height per site (70.2±4.9 cm) was significantly higher than mean vegetation height (28.4±2.4 cm). Height of plants with egg clutches attached and oviposition height were significantly positively correlated. The results suggest that females try to oviposit as high as possible in the vegetation and on the plants selected. In accordance with this, the probability of egg parasitism and of winter egg clutch mortality significantly declined with increasing oviposition height. A preference of G. tanaceti for oviposition sites high up in the vegetation might therefore have evolved due to selection pressures by parasitoids and winter mortality

    Selection of large host plants for oviposition by a monophagous leaf beetle: nutritional quality or enemy-free space?

    Get PDF
    1. Oviposition site selection is crucial for the reproductive success of herbivorous insects. According to the preference–performance hypothesis, females should oviposit on host plants that enhance the performance of their offspring. More specifically, the plant vigour hypothesis predicts that females should prefer large and vigorously growing host plants for oviposition and that larvae should perform best on these plants. 2. The present study examined whether females of the monophagous leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae) prefer to oviposit on large host plant individuals of the meadow clary and whether large host plants are of higher nutritional quality than small host plants. Subsequently, it was tested whether the female preference correlates with offspring performance and survival. 3. In the field, females preferred large host plant individuals for oviposition and host plant quality, i.e. leaf nitrogen content, was significantly higher in leaves of large than of small host plants. 4. In the laboratory, larval development time was shorter on leaves of large host plant individuals than on small host plant individuals, but this could not be shown in the field. 5. However, a predator-exclusion experiment in the field resulted in a higher survival of larvae on large host plants than on small host plants when all predators had free access to the plants. On caged host plants there was no difference in survival of larvae between plant size categories. 6. It is concluded that females of C. canaliculata select oviposition sites that enhance both performance and survival of their offspring, which meets the predictions of the plant vigour hypothesis

    Habitat quality matters for the distribution of an endangered leaf beetle and its egg parasitoid in a fragmented landscape

    Get PDF
    Fragmentation, deterioration, and loss of habitat patches threaten the survival of many insect species. Depending on their trophic level, species may be differently affected by these factors. However, studies investigating more than one trophic level on a landscape scale are still rare. In the present study we analyzed the effects of habitat size, isolation, and quality for the occurrence and population density of the endangered leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae) and its egg parasitoid, the hymenopteran wasp Foersterella reptans Nees (Hymenoptera: Tetracampidae). C. canaliculata is strictly monophagous on meadow sage (Salvia pratensis), while F. reptans can also parasitize other hosts. Both size and isolation of habitat patches strongly determined the occurrence of the beetle. However, population density increased to a much greater extent with increasing host plant density ( = habitat quality) than with habitat size. The occurrence probability of the egg parasitoid increased with increasing population density of C. canaliculata. In conclusion, although maintaining large, well-connected patches with high host plant density is surely the major conservation goal for the specialized herbivore C. canaliculata, also small patches with high host plant densities can support viable populations and should thus be conserved. The less specialized parasitoid F. reptans is more likely to be found on patches with high beetle density, while patch size and isolation seem to be less important
    corecore