81 research outputs found

    Development and optimization of a novel sustained-release dextran tablet formulation for propranolol hydrochloride

    Get PDF
    A novel oral controlled delivery system for propranolol hydrochloride (PPL) was developed and optimized. The in vitro dissolution profiles of sustained-release matrix tablets of racemic PPL were determined and compared with the United States Pharmacopeia (USP) tolerance specifications for Propranolol Hydrochloride Extended-Release Capsules. The influence of matrix forming agents (native dextran, hydroxypropyl methylcellulose (HPMC), cetyl alcohol) and binary mixtures of them on PPL release in vitro was investigated. A central composite design was applied to the optimization of a sustained-release tablet formulation. The sustained-release matrix tablets with good physical, mechanical and technological properties were obtained with a matrix excipient:PPL ratio of 60:40 (w/w), with a dextran:HPMC ratio of 4:1 (w/w) and with a cetyl alcohol amount of 15% (w/w). A comparative kinetic study of the present matrix tablets and commercial SUMIAL RETARD capsules (Spain) was established. The value for the similarity factor (f2 = 69.6) suggested that the dissolution profile of the present two sustained-release oral dosage forms are similar. Higuchi (diffusion) and Hixon–Crowell (erosion) kinetic profiles were achieved and this codependent mechanism of drug release was established

    Wide field of view 3D label-free super-resolution imaging

    Get PDF
    Recently, 3D label-free super-resolution profilers based on microsphere-assisted scanning white light interferometry were introduced having vertical resolution of few angstroms (angstrom) and a lateral resolution approaching 100 nm. However, the use of a single microsphere to generate the photonic nanojet (PNJ) limits their field of view. We overcome this limitation by using polymer microfibers to generate the PNJ. This increases the field of view by order of magnitude in comparison to the previously developed solutions while still resolving sub 100 nm features laterally and keeping the vertical resolution in 1 nm range. To validate the capabilities of our system we used a recordable Blu-ray disc as a sample. It features a grooved surface topology with heights in the range of 20 nm and with distinguishable sub 100 nm lateral features that are unresolvable by diffraction limited optics. We achieved agreement between all three measurement devices across lateral and vertical dimensions. The field of view of our instrument was 110 mu m by 2 mu m and the imaging time was a couple of seconds.Peer reviewe

    3D-printability of aqueous poly(ethylene oxide) gels

    Get PDF
    Printing technologies combined with a computer-aided design (CAD) have found an increasing number of uses in pharmaceutical applications. In extrusion-based printing, the material is forced through a nozzle to form a three-dimensional (3D) structure pre-designed by CAD. The aim of this study was to evaluate the 3D-printability of biocompatible aqueous poly(ethylene oxide) (PEO) gels and to investigate the effects of three formulation parameters on the 3D printing process. The impact of PEO concentration (gel viscosity), printing head speed and printing plate temperature was investigated at three different levels using a full factorial experimental design. The aqueous PEO gels were printed with a bench-top extrusion-based 3D printing system at an ambient room temperature. The viscosity measurements confirmed that the aqueous PEO gels follow a shear-thinning behaviour suitable for extrusion-based printing. Heating the printing plate allowed the gel to dry faster resulting in more precise printing outcome. With the non-heated plate, the gel formed a dumbbell-shaped grid instead of straight lines. Higher concentration and more viscous PEO gels formed the best structured 3D-printed lattices. In conclusion, the accuracy and precision of extrusion-based 3D printing of aqueous PEO gels is highly dependent on the formulation (PEO concentration) and printing parameters (printing head speed, plate temperature). By optimizing these critical process parameters, PEO may be suitable for printing novel drug delivery systems.Peer reviewe

    Fast imaging-based single particle analysis method for solubility determination

    Get PDF
    The solubility and dissolution rates of chemical compounds are crucial properties in several fields of industry and research. However, accurate, rapid and green methods for their measurement, which only consume micrograms of compound, are lacking. Here, the unique approach of non-specific, image-based single particle analysis (SPA) for solubility testing is directly compared to and thus validated on the mid-solubility range with the current gold standard shake-flask method with UV-Vis spectroscopy employed for determining sample concentrations. Five biologically active compounds representing a range of physicochemical properties including pK(a) and logP were analyzed with both methods. The comparison of SPA and the shake-flask (SF) analysis shows excellent linear correlation (R-2 = 0.99). Higher variability of the SPA method is attributed to variability between the properties of individual particles, which cannot be detected with traditional methods. Due to the similar average solubility values compared to those produced with SF, it is concluded that the SPA method has great potential as an analytical tool for small-scale solubility studies. It also has several practical advantages over the current gold standard shake-flask method, such as speed, low consumables consumption, and no requirement for prior knowledge of compound chemistry.Peer reviewe

    Ultrasound-enhanced electrospinning

    Get PDF
    Electrospinning is commonly used to produce polymeric nanofibers. Potential applications for such fibers include novel drug delivery systems, tissue engineering scaffolds, and filters. Electrospinning, however, has shortcomings such as needle clogging and limited ability to control the fiber-properties in a non-chemical manner. This study reports on an orifice-less technique that employs high-intensity focused ultrasound, i.e. ultrasound-enhanced electrospinning. Ultrasound bursts were used to generate a liquid protrusion with a Taylor cone from the surface of a polymer solution of polyethylene oxide. When the polymer was charged with a high negative voltage, nanofibers jetted off from the tip of the protrusion landed on an electrically grounded target held at a constant distance from the tip. Controlling the ultrasound characteristics permitted physical modification of the nanofiber topography at will without using supplemental chemical intervention. Possible applications of tailor-made fibers generated by ultrasound-enhanced electrospinning include pharmaceutical controlled-release applications and biomedical scaffolds with spatial gradients in fiber thickness and mechanical properties.Peer reviewe

    Development of a Novel Electrospun Nanofibrous Delivery System for Poorly Water-Soluble ß-Sitosterol

    Get PDF
    Electrospinning was used as a novel technique for fabricating polymeric nanofibers of a serum cholesterol lowering and poorly water-soluble plant sterol, β-sitosterol. Chitosan was used as a stabilizer/carrier polymer. The mean diameters of nanofibers ranged from 150 nm to 218 nm. β-sitosterol was in an amorphous form and homogeneously dispersed in the nanofibers. The β-sitosterol-loaded nanofibers were freely water-soluble and exhibited very short lag-time in releasing the plant sterol. The dissolution was associated with an immediate recrystallization of β-sitosterol in submicron level. In conclusion, electrospinning is a promising future technology for the formulation of poorly water-soluble plant sterols.Peer reviewe

    Atomic layer deposition-A novel method for the ultrathin coating of minitablets

    Get PDF
    We introduce atomic layer deposition (ALD) as a novel method for the ultrathin coating (nanolayering) of minitablets. The effects of ALD coating on the tablet characteristics and taste masking were investigated and compared with the established coating method. Minitablets containing bitter tasting denatonium benzoate were coated by ALD using three different TiO2 nanolayer thicknesses (number of deposition cycles). The established coating of minitablets was performed in a laboratory-scale fluidized-bed apparatus using four concentration levels of aqueous Eudragit (R) E coating polymer. The coated minitablets were studied with respect to the surface morphology, taste masking capacity, in vitro disintegration and dissolution, mechanical properties, and uniformity of content. The ALD thin coating resulted in minimal increase in the dimensions and weight of minitablets in comparison to original tablet cores. Surprisingly, ALD coating with TiO2 nanolayers decreased the mechanical strength, and accelerated the in vitro disintegration of minitablets. Unlike previous studies, the studied levels of TiO2 nanolayers on tablets were also inadequate for effective taste masking. In summary, ALD permits a simple and rapid method for the ultrathin coating (nanolayering) of minitablets, and provides nanoscale-range TiO2 coatings on porous minitablets. More research, however, is needed to clarify its potential in tablet taste masking applications. (C) 2017 Elsevier B.V. All rights reserved.Peer reviewe

    Scaling-up the Ultrasound-Enhanced Electrospinning Device

    Get PDF
    Ultrasound-enhanced electrospinning (USES) is an electrospinning method that utilizes focused ultrasound to produce nanofibers. The focused ultrasound creates an acoustic fountain on a polymer solution surface. With a high-voltage electric field, electrospinning is initiated from the fountain. Until now USES has been limited by its production rate due to the use of a single ultrasound transducer. Here we present a multi-transducer USES device, with a similar footprint as our old device. Increase in throughput was studied using three of the transducers. Simultaneous, stable spinning, with three transducers was not achieved, however we double the amount of produced fiber with two transducers. Compared to the previous USES device, the results indicate that USES can potentially be scaled up.Peer reviewe
    corecore