66 research outputs found
Decision Agriculture
In this chapter, the latest developments in the field of decision agriculture are discussed. The practice of management zones in digital agriculture is described for efficient and smart faming. Accordingly, the methodology for delineating management zones is presented. Modeling of decision support systems is explained along with discussion of the issues and challenges in this area. Moreover, the precision agriculture technology is also considered. Moreover, the chapter surveys the state of the decision agriculture technologies in the countries such as Bulgaria, Denmark, France, Israel, Malaysia, Pakistan, United Kingdom, Ukraine, and Sweden. Finally, different field factors such as GPS accuracy and crop growth are also analyzed
Protocol of the Berlin Long-term Observation of Vascular Events (BeLOVE): a prospective cohort study with deep phenotyping and long-term follow up of cardiovascular high-risk patients
INTRODUCTION: The Berlin Long-term Observation of Vascular Events is a prospective cohort study that aims to improve prediction and disease-overarching mechanistic understanding of cardiovascular (CV) disease progression by comprehensively investigating a high-risk patient population with different organ manifestations. METHODS AND ANALYSIS: A total of 8000 adult patients will be recruited who have either suffered an acute CV event (CVE) requiring hospitalisation or who have not experienced a recent acute CVE but are at high CV risk. An initial study examination is performed during the acute treatment phase of the index CVE or after inclusion into the chronic high risk arm. Deep phenotyping is then performed after ~90 days and includes assessments of the patient's medical history, health status and behaviour, cardiovascular, nutritional, metabolic, and anthropometric parameters, and patient-related outcome measures. Biospecimens are collected for analyses including 'OMICs' technologies (e.g., genomics, metabolomics, proteomics). Subcohorts undergo MRI of the brain, heart, lung and kidney, as well as more comprehensive metabolic, neurological and CV examinations. All participants are followed up for up to 10 years to assess clinical outcomes, primarily major adverse CVEs and patient-reported (value-based) outcomes. State-of-the-art clinical research methods, as well as emerging techniques from systems medicine and artificial intelligence, will be used to identify associations between patient characteristics, longitudinal changes and outcomes. ETHICS AND DISSEMINATION: The study was approved by the Charité-Universitätsmedizin Berlin ethics committee (EA1/066/17). The results of the study will be disseminated through international peer-reviewed publications and congress presentations. STUDY REGISTRATION: First study phase: Approved WHO primary register: German Clinical Trials Register: https://drks.de/search/de/trial/DRKS00016852; WHO International Clinical Registry Platform: http://apps.who.int/trialsearch/Trial2.aspx?TrialID=DRKS00016852. Recruitment started on July 18, 2017.Second study phase: Approved WHO primary register: German Clinical Trials Register DRKS00023323, date of registration: November 4, 2020, URL: http://www.drks.de/ DRKS00023323. Recruitment started on January 1, 2021
Fe-Mg interdiffusion rates in clinopyroxene: Experimental data and implications for Fe-Mg exchange geothermometers
Chemical interdiffusion of Fe-Mg along the c-axis [001] in natural diopside crystals (XDi = 0.93) was experimentally studied at ambient pressure, at temperatures ranging from 800 to 1,200 °C and oxygen fugacities from 10-11 to 10-17 bar. Diffusion couples were prepared by ablating an olivine (XFo = 0.3) target to deposit a thin film (20-100 nm) onto a polished surface of a natural, oriented diopside crystal using the pulsed laser deposition technique. After diffusion anneals, compositional depth profiles at the near surface region (~400 nm) were measured using Rutherford backscattering spectroscopy. In the experimental temperature and compositional range, no strong dependence of DFe-Mg on composition of clinopyroxene (Fe/Mg ratio between Di93-Di65) or oxygen fugacity could be detected within the resolution of the study. The lack of fO2-dependence may be related to the relatively high Al content of the crystals used in this study. Diffusion coefficients, DFe-Mg, can be described by a single Arrhenius relation with (Formula presented). DFe-Mg in clinopyroxene appears to be faster than diffusion involving Ca-species (e.g., DCa-Mg) while it is slower than DFe-Mg in other common mafic minerals (spinel, olivine, garnet, and orthopyroxene). As a consequence, diffusion in clinopyroxene may be the rate-limiting process for the freezing of many geothermometers, and compositional zoning in clinopyroxene may preserve records of a higher (compared to that preserved in other coexisting mafic minerals) temperature segment of the thermal history of a rock. In the absence of pervasive recrystallization, clinopyroxene grains will retain compositions from peak temperatures at their cores in most geological and planetary settings where peak temperatures did not exceed ~1,100 °C (e.g., resetting may be expected in slowly cooled mantle rocks, many plutonic mafic rocks, or ultra-high temperature metamorphic rocks)
Hyperspectral seafloor mapping and direct bathymetry calculation using HyMap data from the Ningaloo reef and Rottnest Island areas in Western Australia
Hyperspectral sensing allows us to view the earth not only in a few, but hundreds of different spectral channels over a wide wavelength range and to map the surface composition based on the spectral signatures observed. Applications range from mineral mapping to environmental monitoring, but aquatic spectral mapping has advanced steadily over the last few years as processing time and algorithms become faster and more efficient.
The HyMap airborne spectrometer is an airborne remote sensing instrument collecting data in 126 spectral channels from the visible (VIS) to the shortwave infrared (SWIR) wavelength regions (0.45 to 2.5 um). In the past it has been seen by various scientists as not adequate to provide sufficient spectral information for aquatic applications. With a multitude of applications over the last few years however, it was demonstrated that the high signal to noise ratio allows for good spectral discrimination in the visible wavelength region and the added SWIR spectral modules allow for improved sun-glint removal techniques to be applied. Furthermore any floating substances can be better discriminated from suspended matter by having SWIR channels available.
HyMap data was collected for two aquatic R&D projects in Western Australia: one over the Ningaloo Reef, near Yardie Creek, in N-WA and the other over Rottnest Island near Perth. Bathymetry calculations to 20m and seafloor mapping results are being presented, introducing new processing techniques - developed initially by DLR (Germany) – to Australian waters. These products allow seamless mosaicing of multiple flight lines and demonstrate a high level of accuracy compared to conventional mapping methods. Furthermore they provide 100 % coverage and results on a pixel by pixel base compared to interpolated results derived from line profiling methods
Site Specific Control of Seed-Numbers per Unit Area for Grain Drills
Rosana G. Moreira, Editor-in-Chief; Texas A&M UniversityThis is a Technical Paper from International Commission of Agricultural Engineering (CIGR, Commission Internationale du Genie Rural) E-Journal Volume 4 (2002): H. Heege and B. Feldhaus. Site Specific Control of Seed-Numbers per Unit Area for Grain Drills. Vol. IV. December 2002
Sea floor and bathymetry mapping: Rottnest Island, Western Australia, AU
Rottnest Island is a marine reserve lying 20 km offshore from Perth, Western Australia. It has a subtropical climate and, due to the south flowing, warm Leeuwin Current, many tropical as well as temperate marine species are found here. Many marine organisms are considered as isolated, at their southernmost extent. The marine reserve is mostly in shallow (less than 20 m depth) water and is made up of the following main habitat categories: sand, seagrass, mixed seagrass and reef, reef, intertidal platform and reef wash. The reef habitat (~ 45%) occupies the largest area, followed by seagrass (21%) and sand (20%) (Rottnest Island Management Plan 2003-2008). The island also has important coral communities, though not extensive in cover. Bathymetry of the waters surrounding Rottnest Island is quite varied, owing to the presence of many submerged limestone formations, favourite spots for divers and snorkellers
- …