307 research outputs found

    Voice analysis for neurological disorder recognition – a systematic review and perspective on emerging trends

    Get PDF
    Quantifying neurological disorders from voice is a rapidly growing field of research and holds promise for unobtrusive and large-scale disorder monitoring. The data recording setup and data analysis pipelines are both crucial aspects to effectively obtain relevant information from participants. Therefore, we performed a systematic review to provide a high-level overview of practices across various neurological disorders and highlight emerging trends. PRISMA-based literature searches were conducted through PubMed, Web of Science, and IEEE Xplore to identify publications in which original (i.e., newly recorded) datasets were collected. Disorders of interest were psychiatric as well as neurodegenerative disorders, such as bipolar disorder, depression, and stress, as well as amyotrophic lateral sclerosis amyotrophic lateral sclerosis, Alzheimer's, and Parkinson's disease, and speech impairments (aphasia, dysarthria, and dysphonia). Of the 43 retrieved studies, Parkinson's disease is represented most prominently with 19 discovered datasets. Free speech and read speech tasks are most commonly used across disorders. Besides popular feature extraction toolkits, many studies utilise custom-built feature sets. Correlations of acoustic features with psychiatric and neurodegenerative disorders are presented. In terms of analysis, statistical analysis for significance of individual features is commonly used, as well as predictive modeling approaches, especially with support vector machines and a small number of artificial neural networks. An emerging trend and recommendation for future studies is to collect data in everyday life to facilitate longitudinal data collection and to capture the behavior of participants more naturally. Another emerging trend is to record additional modalities to voice, which can potentially increase analytical performance

    The Poplar-Poplar Rust Interaction: Insights from Genomics and Transcriptomics

    Get PDF
    Poplars are extensively cultivated worldwide, and their susceptibility to the leaf rust fungus Melampsora larici-populina leads to considerable damages in plantations. Despite a good knowledge of the poplar rust life cycle, and particularly the epidemics on poplar, the perennial status of the plant host and the obligate biotrophic lifestyle of the rust fungus are bottlenecks for molecular investigations. Following the completion of both M. larici-populina and Populus trichocarpa genome sequences, gene families involved in poplar resistance or in rust fungus virulence were investigated, allowing the identification of key genetic determinants likely controlling the outcome of the interaction. Specific expansions of resistance and defense-related genes in poplar indicate probable innovations in perennial species in relation with host-pathogen interactions. The genome of M. Larici-populina contains a strikingly high number of genes encoding small secreted proteins (SSPs) representing hundreds of candidate effectors. Transcriptome analyses of interacting partners in compatible and incompatible interactions revealed conserved set of genes involved in poplar defense reactions as well as timely regulated expression of SSP transcripts during host tissues colonisation. Ongoing functional studies of selected candidate effectors will be achieved mainly on the basis of recombinant protein purification and subsequent characterisation

    A Novel Authentication Model Based on Secured IP Smart Cards

    No full text
    International audienceAn authentication model using secured smart cards implementing IP services is presented. In this model, some authentication functions usually found in the access network are moved inside the smart card. This innovative architecture simplifies current authentication schemes and helps to design new services

    The Rust Fungus Melampsora larici-populina Expresses a Conserved Genetic Program and Distinct Sets of Secreted Protein Genes During Infection of Its Two Host Plants, Larch and Poplar

    No full text
    Mechanisms required for broad-spectrum or specific host colonization of plant parasites are poorly understood. As a perfect illustration, heteroecious rust fungi require two alternate host plants to complete their life cycles. Melampsora larici-populina infects two taxonomically unrelated plants, larch, on which sexual reproduction is achieved, and poplar, on which clonal multiplication occurs, leading to severe epidemics in plantations. We applied deep RNA sequencing to three key developmental stages of M. larici-populina infection on larch: basidia, pycnia, and aecia, and we performed comparative transcriptomics of infection on poplar and larch hosts, using available expression data. Secreted protein was the only significantly overrepresented category among differentially expressed M. larici-populina genes between the basidial, the pycnial, and the aecial stages, highlighting their probable involvement in the infection process. Comparison of fungal transcriptomes in larch and poplar revealed a majority of rust genes were commonly expressed on the two hosts and a fraction exhibited host-specific expression. More particularly, gene families encoding small secreted proteins presented striking expression profiles that highlight probable candidate effectors specialized on each host.Our results bring valuable new information about the biological cycle of rust fungi and identify genes that may contribute to host specificity

    An X-ray database, tools and procedures for the study of speech production

    Get PDF
    International audienceThis paper presents an X-ray database and processing tools that have been respectively elaborated and developed within a research project on speech production (DOCVACIM). The X-ray data deal with various phonetic issues in different languages spoken in Europe, in Africa, in Asia and in Latin America. The goal of the project, apart from looking into issues related to coarticulation, inversion and evaluation of physical models, is to make available to the speech scientific community: 1) a set of multilingual and multimedia data on speech production containing cine-radiographic images of the vocal tract, acoustic signals, tracings and contours of the vocal tract, all synchronized and accessible within a processing platform; 2) adapted tools and software that allow extracting articulatory information from these data, in relation with prior phonological labeling. The focus in this article is on the adapted tools and software which have been developed within the project
    corecore