30 research outputs found
Recommended from our members
SCDAP/RELAP5 independent peer review
The SCDAP/RELAP5 code has been developed for best-estimate transient simulation of light-water-reactor coolant systems during severe accidents. The newest version of the code is SCDAP/RELAP5/MOD3. The US Nuclear Regulatory Commission (NRC) decided that there was a need for a broad technical review of the code by recognized experts to determine overall technical adequacy, even though the code is still under development. For this purpose, an eight-member SCDAP/RELAP5 Peer Review Committee was organized, and the outcome of the review should help the NRC prioritize future code-development activity. Because the code is designed to be mechanistic, the Committee used a higher standard for technical adequacy than was employed in the peer review of the parametric MELCOR code. The Committee completed its review of the SCDAP/RELAP5 code, and the findings are documented in this report. Based on these findings, recommendations in five areas are provided: (1) phenomenological models, (2) code-design objectives, (3) code-targeted applications, (4) other findings, and (5) additional recommendations
Accessing unexplored regions of sequence space in directed enzyme evolution via insertion/deletion mutagenesis
Abstract: Insertions and deletions (InDels) are frequently observed in natural protein evolution, yet their potential remains untapped in laboratory evolution. Here we introduce a transposon-based mutagenesis approach (TRIAD) to generate libraries of random variants with short in-frame InDels, and screen TRIAD libraries to evolve a promiscuous arylesterase activity in a phosphotriesterase. The evolution exhibits features that differ from previous point mutagenesis campaigns: while the average activity of TRIAD variants is more compromised, a larger proportion has successfully adapted for the activity. Different functional profiles emerge: (i) both strong and weak trade-off between activities are observed; (ii) trade-off is more severe (20- to 35-fold increased kcat/KM in arylesterase with 60-400-fold decreases in phosphotriesterase activity) and (iii) improvements are present in kcat rather than just in KM, suggesting adaptive solutions. These distinct features make TRIAD an alternative to widely used point mutagenesis, accessing functional innovations and traversing unexplored fitness landscape regions
Recommended from our members
RADTRAN/RADCAT user guide.
RADTRAN is a program and code for calculating the risks of transporting radioactive materials. The first versions of the program, RADTRAN I and II, were developed for NUREG-0170 (USNRC, 1977), the first environmental impact statement on transportation of radioactive materials. RADTRAN and its associated software have undergone a number of improvements and advances consistent with improvements in computer technology
Recommended from our members
Operational aspects of an externally driven neutron multiplier assembly concept using a Z-pinch 14-MeV Neutron Source (ZEDNA).
This report documents the key safety and operational aspects of a Z-pinch Externally Driven Nuclear Assembly (ZEDNA) reactor concept which is envisioned to be built and operated at the Z-machine facility in Technical Area IV. Operating parameters and reactor neutronic conditions are established that would meet the design requirements of the system. Accident and off-normal conditions are analyzed using a point-kinetics, one-dimensional thermo-mechanical code developed specifically for ZEDNA applications. Downwind dose calculations are presented to determine the potential dose to the collocated worker and public in the event of a hypothetical catastrophic accident. Current and magnetic impulse modeling and the debris shield design are examined for the interface between the Z machine and the ZEDNA. This work was performed as part of the Advanced Fusion Grand Challenge Laboratory Directed Research and Development Program. The conclusion of this work is that the ZEDNA concept is feasible and could be operated at the Z-machine facility without undue risk to collocated workers and the public
Recommended from our members
Accessing unexplored regions of sequence space in directed enzyme evolution via insertion/deletion mutagenesis
Abstract: Insertions and deletions (InDels) are frequently observed in natural protein evolution, yet their potential remains untapped in laboratory evolution. Here we introduce a transposon-based mutagenesis approach (TRIAD) to generate libraries of random variants with short in-frame InDels, and screen TRIAD libraries to evolve a promiscuous arylesterase activity in a phosphotriesterase. The evolution exhibits features that differ from previous point mutagenesis campaigns: while the average activity of TRIAD variants is more compromised, a larger proportion has successfully adapted for the activity. Different functional profiles emerge: (i) both strong and weak trade-off between activities are observed; (ii) trade-off is more severe (20- to 35-fold increased kcat/KM in arylesterase with 60-400-fold decreases in phosphotriesterase activity) and (iii) improvements are present in kcat rather than just in KM, suggesting adaptive solutions. These distinct features make TRIAD an alternative to widely used point mutagenesis, accessing functional innovations and traversing unexplored fitness landscape regions
Recommended from our members
User`s Guide for the KBERT 1.0 Code: For the Knowledge-Based Estimation of Hazards of Radioactive Material Releases From DOE Nuclear Facilities
The possibility of worker exposure to radioactive materials during accidents at nuclear facilities is a principal concern of the DOE. The KBERT software has been developed at Sandia National Laboratories under DOE support to address this issue by assisting in the estimation of risks posed by accidents at chemical and nuclear facilities. KBERT is an acronym for Knowledge-Based system for Estimating hazards of Radioactive material release Transients. The current prototype version of KBERT focuses on calculation of doses and consequences to in-facility workers due to accidental releases of radioactivity. This report gives detailed instructions on how a user who is familiar with the design, layout and potential hazards of a facility can use KBERT to assess the risks to workers in that facility. KBERT is a tool that allows a user to simulate possible accidents and observe the predicted consequences. Potential applications of KBERT include the evaluation of the efficacy of evacuation practices, worker shielding, personal protection equipment and the containment of hazardous materials
Accessing unexplored regions of sequence space in directed enzyme evolution via insertion/deletion mutagenesis
Insertions/Deletions (InDels) remain an untapped source of protein diversity in laboratory evolution. The method TRIAD generates libraries of random variants with short in-frame InDels using transposons, allowing a comparison of their evolutionary potential with widely-used point mutant libraries
Recommended from our members
User's guide for the KBERT 2.0 code
The possibility of worker exposure to radioactive materials during accidents at nuclear facilities is a principal concern of the DOE. The KBERT analysis tool has been developed at Sandia National Laboratories under DOE support to address this issue by assisting in the estimation of risks posed by accidents at chemical and nuclear facilities. KBERT is an acronym for Knowledge-Based system for Estimating hazards of Radioactive material release Transients. KBERT's primary purpose is to predict doses to in-facility workers due to accidental releases of radioactivity. Models are also in KBERT for predicting doses to the public based upon plume dispersal models. This report gives detailed instructions on how a user, starting with knowledge of design, layout and potential hazards of a facility, can use KBERT to assess the risks to workers in that facility and to the public as a result of releases from the facility. A key feature of KBERT is the inclusion of the non-facility-specific material release, radioactive decay, and dose databases (i.e., knowledge bases) that might also be needed for such an assessment. The material release characteristics are based on the 1994 DOE Handbook for airborne release fractions/rates and respirable fractions for nonreactor nuclear facilities. Another important feature of KBERTis the inclusion of a transparent interface between KBERTand the Nuclear Regulatory Commission's CONTAIN code. This interface enables KBERT to use the validated and proven flow models in CONTAIN to predict inter-room airflows. Potential applications of KBERT include the evaluation of the consequences of evacuation practices, the effect of personal protection equipment, and the degree of containment of hazardous materials