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SUPPLEMENTARY NOTES 

Supplementary Note 1: Detailed consideration of theoretical diversity and InDel 

redundancy 

The theoretical diversity (i.e., the total number of possible variants) accessible via such 

modifications will depend both on the type of InDel that is introduced and on the target 

sequence (Supplementary Figure 5). For instance, as deletions can occur once at each 

position of the target DNA sequence, the maximal possible theoretical diversity of deletion 

libraries is identical to the number of nucleotides (Supplementary Figure S5A), e.g., ~1,000 

possible deletion variants for a ~1 kbp target sequence (e.g., wtPTE). By contrast, since 

TRIAD inserts degenerate nucleotide triplets (e.g., [NNN]1, 2 or 3 corresponding to 64 (=43), 

4,096 (=46) and 262,144 (=49) possible sequences, respectively), the number of possible 

insertion variants will depend both on the length of the target sequence and the size of the 

insertions. The maximal possible theoretical diversity for insertion libraries generated from 

wtPTE is 6.4104 (=64103), ~4.1106 (=642103), and ~2.6108 (=643103), corresponding to 

+3, +6 and +9 bp insertions, respectively (Supplementary Figure S5A). Because of potential 

InDel redundancy depending on the target sequence (i.e., two or more neighbouring InDels 

can result in the same DNA variant; Supplementary Figure S5B), the theoretical diversities 

accessible from a given DNA sequence are usually lower (see Supplementary Figure S5C in 

the specific case of wtPTE). Theoretical diversities at the protein level (i.e., the number of 

protein variants that have the intended InDel length) are further reduced due to codon 

degeneracy and occurrence of stop codons as a result of certain InDels (Supplementary 

Figure S5C). Practically, the size of our libraries was limited by transformation efficiency, 

achieving > 106 variants upon transformation into E. coli. Therefore, deletions as well as +3 

bp insertions were oversampled such that the library diversity was maintained between 

transformations, while the diversity of sampled transposition sites was maintained in larger +6 

bp and +9 bp insertion libraries, with only a fraction of theoretical library diversity generated 

from the outset. 

Supplementary Note 2: Library quality assessment by Sanger sequencing 

In addition to the deep next-generation sequencing described in the main text, the accuracy of 

the TRIAD approach (specifically the number of intended in-frame InDels, unwanted 

frameshifts and incidental mutations) was also assessed using Sanger sequencing to give the 

reader a picture how such an ‘everyday analysis’ of a handful of individual wtPTE InDel 

variants would fare. To this end around 20 colonies from each naïve InDel library of individual 

wtPTE variants were randomly picked (after the final transformation step into E. coli) and 121 

variants in total sequenced (Supplementary Tables S1-3). All the sequenced variants 

displayed only a single modification resulting from the initial transposon insertion and 90 

among them (74%; corresponding to 89 unique InDels) showed anticipated in-frame InDel 

mutations (86% of the deletion variants; 61% of the insertion variants; Supplementary Tables 

S1-2). Most in-frame InDels were observed only once and were distributed throughout the 
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wtPTE sequence (Supplementary Table S3). No frameshift was observed among sequenced 

variants from the -3 bp library, which is generated without shuttle cloning steps in contrast to 

the other libraries. Frameshifts were more frequent among variants from the +3, +6 and +9 bp 

insertion libraries (~40% of the sequenced variants). Higher frameshift frequency in insertion 

libraries may be due to exonuclease over-digestion by the Klenow fragment of DNA 

polymerase I, which removes 3’ overhangs left by AcuI digestion (Figure 2B). Note that no 

incidental additional base pair point mutations located elsewhere in the variants’ sequence 

(i.e., at positions different to that of the initial transposon insertion sites) and resulting from the 

TRIAD cloning process were detected. On the protein level, TRIAD may generate a 

secondary point substitution contiguous to the introduced InDel 1, depending on the point of 

insertion of TransDel or TransIns in the reading frame of the target sequence. This occurs 

when the InDel is not inserted at previous codon boundaries (statistically in two of three 

cases, although not all such events lead to amino acid substitution). As a result, 22% of the 

InDels observed in individual wtPTE variants exhibited such an adjacent substitution. 

We conclude that the accuracy of the TRIAD procedure can be assessed based on a 

small number of sequences (n = 121, giving 89 unique in-frame InDels), to provide a quality 

control step informing in TRIAD library synthesis that is a representative measure of the 

distribution of InDels over the target sequence and assess the coverage afforded by the initial 

transposition step prior to diversification via InDel mutagenesis (Table 1), in lieu of a deep 

next-generation sequencing approach. 

Supplementary Note 3: Effects of InDels vs. point substitutions on soluble enzyme 

expression 

InDels are more detrimental to the fitness of wtPTE by one order of magnitude in comparison 

to point substitutions (see main text; Figure 5C). Enzyme fitness is reflective of both enzyme 

activity (i.e., catalytic efficiency) and the concentration of soluble and functional enzyme which 

itself relate to protein stability 2. Thermodynamic stability (i.e., the difference in free energy 

between the native and unfolded state in vitro) is often used to describe the relationship 

between protein stability and soluble and functional expression in the cell (e.g., p53)3. 

However, in the case of wtPTE, the level of soluble and functional enzyme has previously 

been shown to correlate with kinetic stability (related to folding kinetics during expression in 

the cell) 4. Therefore, to further investigate the stability effect of InDels vs. point substitutions, 

changes in expression levels of several InDel (TRIAD libraries: -3 bp deletions and +3 bp 

insertions) and point substitution (TriNEx library) variants were examined and correlated with 

fitness (native phosphotriesterase activity against paraoxon, measured in cell lysates) 

(Supplementary Figure S11; Supplementary Tables S11-12; see also supplementary 

methods). Overall, this analysis confirmed that InDels are more deleterious to soluble 

expression and protein stability than substitutions. Indeed, 17 out 30 deletions and 11 out of 

27 insertions were found to be strongly destabilizing (> 2-fold decrease in soluble expression 

relative to wtPTE) while this was the case for only 6 out of 30 substitution variants 

(Supplementary Figure S11; Supplementary Tables S12). Likewise, the average impact on 
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soluble expression (mean solubility change) was up to 1.5-fold lower for InDels in comparison 

to substitutions (Supplementary Table S12). The stronger decrease in protein solubility 

observed in the case of InDels was also correlated to their more detrimental effect on fitness 

(enzyme activity) (Supplementary Figure S11; Supplementary Table S12). 

Interestingly, some InDels affecting core residues that are relatively distant from the 

enzyme’s catalytic centre were functionally deleterious (< 10-fold decrease in PTE activity) 

while retaining similar soluble expression levels (≤1.5-fold change) to the parent wtPTE 

(Supplementary Table S12). Indeed, while average distances to the catalytic metals for all 

solubility-neutral mutations were similar (16.4 ± 5.1, 17.3 ± 5 and 16.5 ± 5.6 ångströms for 

deletions, insertions and substitutions, respectively; Supplementary Table S12), non-

destabilizing but functionally deleterious insertions and deletions were on average more 

distant to the active site than substitutions (13.9 ± 4.8 and 16.8 ± 5 ångströms for deletions 

and insertions, respectively versus 9.9 ± 3.3 ångströms for substitutions; Supplementary 

Table S12). This observation illustrates how InDels may trigger active site changes with 

functional effects at a longer range than substitutions. 

 Supplementary Note 4: Focused InDel libraries generated by TRIAD 

TRIAD was additionally applied to focus the InDel mutagenesis on a specific targeted region 

within a protein by adding an in-frame seamless cloning step using a type IIS restriction 

enzyme such as SapI (strategy outlined in Supplementary Figure S17) 5. This approach 

requires the target region to be extracted from its original gene and cloned in its own target 

plasmid with flanking SapI recognition sequences. This allows transposon integration into the 

target region in isolation from the rest of the gene. In parallel, an adapter plasmid is 

constructed, comprising the original gene in which the target region is replaced by an adapter 

sequence. This adapter sequence is designed with flanking SapI recognition sequences in 

order to allow the subcloning of the target region containing the randomly inserted transposon 

back inside its original gene. This last step results in the generation of the transposon 

insertion library focused on the region of interest, upon which the cloning steps of TRIAD 

leading to the generation of InDel libraries (Figure 1) can be performed.  

To demonstrate this targeted approach of TRIAD, two deletion (-3 and -6 bp) and one 

insertion (+3 bp) libraries were generated in the sequence encoding wtPTE’s active site loop 

7 (L7), which has shown to be crucial for the specificity of wtPTE and homologous lactonases 

in previous rational InDel mutagenesis studies 6, 7. In vitro transposition reactions were 

performed on a vector containing the L7 - encoding DNA sequence (from Leu252 to Gln278; 

81 bp) flanked by SapI restriction sites (Supplementary Figure S13). After isolation by SapI 

digestion, the resulting L7 TransDel and TransIns insertion libraries were then subcloned into 

a plasmid containing a modified wtPTE gene with a SapI-adapter instead of L7. This 

additional cloning step enabled to recreate a full wtPTE gene with TransDel or TransIns 

randomly inserted - in theory - at all 81 positions within L7. After application of the further 

steps of TRIAD, libraries with insertions and deletions limited to L7 only were generated. 

Intermediate and final library transformation steps yielded diversities of >106 variants, 
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practically oversampling by >105-fold the theoretical diversity of the libraries (81 possible 

transposon insertion sites in L7). Sequence analysis of randomly chosen variants revealed 

the distribution of codons deleted in L7. Whilst there is good coverage of the target sequence 

(~70% of residues are deleted at least once), there is a bias of deletions toward certain 

residues, especially Leu262, Leu272 and the residues neighbouring them (Supplementary 

Table S15). These biases are likely caused by preferential transposon insertions at specific 

points along the DNA sequence encoding Loop 7.  
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SUPPLEMENTARY METHODS 

Supplementary Method S1. Design, construction and preparation of transposons 

and cloning cassettes 

DNA sequences corresponding to the TransDel transposon (Supplementary Figure S2A) and 

the Del2 cassette (previously dubbed Insertion Replacement Cassette in 8) were synthesized 

and cloned into pUC57 (Supplementary Figure S2D) at the EcoRV site (GenScript, NJ, USA). 

Cloning strategies involving double stranded oligonucleotide adapters (Supplementary Table 

S14) were used to generate pUC57-TransIns (Supplementary Figure S2A) from pUC57-

TransDel, and pUC57-Del3 (Supplementary Figure S2B), -Ins1, -Ins2 and -Ins3 

(Supplementary Figure S2C) from pUC57-Del2. For all adapter cloning experiments, each 

pair of custom phosphorylated oligonucleotides (100 μM in 50mM Tris-HCl pH 8.0, 100 mM 

NaCl, 1mM EDTA) were mixed to a final concentration of 50 μM and annealed in a PCR 

thermocycler ((1) 2 min at 95°C, (2) 10 min at 52°C and (3) hold at 4°C). The resulting 

adapters were then ligated to a final concentration of 125 nM into their target plasmid (50-100 

ng). The ligation products were then transformed into electrocompetent E. coli E. cloni® 10G 

cells. Plasmid pUC57-TransIns was generated by inserting the TransIns adapter in pUC57-

TransDel at EcoRI/SpeI sites. Plasmid pUC57-Del3 was obtained by inserting the Del3 

adapter in pUC57-Del2 at EcoRI/SpeI sites. Plasmids pUC57-Ins1, -Ins2 and -Ins3 

correspond to libraries of inserts of one, two and three nucleotide triplets, respectively. First, 

an intermediate plasmid, dubbed pUC57-Ins, was obtained by inserting the Ins adapter in 

pUC57-Del2 at EcoRI/SpeI sites. Adapters Ins1, Ins2 and Ins3 were then inserted in pUC57-

Ins at NcoI/HindIII sites to generate separate plasmid libraries corresponding to pUC57-Ins1, -

Ins2 and -Ins3, respectively. In this last step, each DNA library was extracted from around 107 

E. coli Ecloni® 10G transforming colonies. 

Supplementary Method S2. Design and assembly of pID vectors 

Two expression vectors, dubbed pID-T7 (expression under the control of T7 promoter) and 

pID-Tet (expression under the control of Tet promoter), were specifically designed for the 

generation of InDel libraries following the TRIAD approach. These vectors do not contain any 

MlyI, AcuI and NotI restriction sites in their sequence and were assembled from three different 

modules (for origin of replication, ampicillin resistance (AmpR) selection and 

expression/cloning) separated by three restriction sites, AflII, AatII and SpeI (Supplementary 

Figure S4). 

Origin of replication module. Two successive site-directed saturation mutagenesis 

experiments (using primer pairs Ori-MlyI and Ori-AcuI; Supplementary Table S14) were 

performed to remove recognition sites for MlyI and AcuI in the origin of replication (ori) of 

pUC19 used as starting template. Successful removal of the recognition sequences was 

confirmed by the absence of restriction digest product with the corresponding enzyme. The 

final ori variant (i.e., with no MlyI and AcuI) was then amplified with primers Ori-AflII and Ori-
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SpeI (Supplementary Table S14), yielding the origin of replication module (framed by AflII and 

SpeI) for the pID vectors. 

Ampicillin resistance selection and T7 expression modules. The sequences 

corresponding to the T7 expression (Supplementary Figure S4B) and AmpR cassettes 

(Supplementary Figure S4D) were synthesized by GenScript (NJ, USA). Position T8 of the T7 

promoter was mutated to C to remove the MlyI site present in the natural promoter 9. Silent 

mutations were introduced in the AmpR sequence to remove recognition sites for AcuI and 

FokI. 

Assembly of pID-T7. The DNA cassettes corresponding to the modified ori (AflII /SpeI), 

AmpR (AflII /AatII) and the T7 expression module (AatII/SpeI) were isolated by double 

digestion with their corresponding restriction enzymes and agarose gel purification. A ligation 

reaction with 50 ng of each DNA fragment was then performed using T4 DNA ligase 

(Fermentas) overnight at 18˚C. After purification, the ligation products were transformed into 

electrocompetent E. coli Ecloni® 10G cells subsequently plated on LB-agar supplemented 

with 100 µg/mL ampicillin. The pID-T7 constructs extracted from the resulting transforming 

colonies were confirmed by restriction digestion profile and sequencing. 

Generation and assembly of pID-Tet. TetR (encoding the Tet repressor) was amplified from 

pASK-IBA5plus (IBA Lifesciences) with primers TetR-F and TetR-B (Supplementary Table 

S14). AmpR was amplified from pID-T7 with primers mTEM1-F and mTEM1-B. The SpeI/AatII 

module for pID-Tet containing the AmpR-TetR operon was obtained by overlap PCR of these 

two products with primers mTEM1-F and TetR-B and subsequently inserted into pID-T7 at 

SpeI/AatII sites (replacing the AmpR cassette) to yield pID-T7-TetR. The Tet promoter 

sequence was amplified from pASK-IBA5plus with primers TetProm-F and TetProm-B and 

inserted into pID-T7-TetR at the AflII/NdeI sites (replacing the T7 promoter), yielding plasmid 

pID-Tet. 

Supplementary Method S3. wtPTE reference sequence 

>wtPTE 
ATGGCCAGATGATTAATTCCTAATTTTTGTTGACACTCTATCATTGATAGAGTTATTTTACC
ACTCCCTATCAGTGATAGAGAAAAGTGAAATGAATAGTTCGACAAAAATCTAGAAATAATT
TTGTTTAACTTTAAGAAGGAGATATACATATGGCTAGCTGGAGCCACCCGCAGTTCGAAA
AAGGCGCCGGATCCTCCATGGGCGATCGGATCAATACCGTGCGCGGTCCTATCACAAT
CTCCGAGGCGGGTTTCACACTAACCCACGAGCACATCTGCGGCAGCTCGGCAGGATTC
TTGCGTGCTTGGCCGGAGTTCTTCGGTAGCCGCAAAGCTCTAGCGGAAAAGGCTGTGA
GAGGATTGCGCCGCGCCAGAGCGGCTGGCGTGCGAACGATTGTCGATGTGTCGACTTT
CGATCTCGGTCGCGACGTTAGTTTATTGGCCGAGGTTTCGCGGGCTGCCGACGTTCATA
TCGTGGCGGCGACCGGCTTGTGGCTCGACCCGCCACTTTCGATGCGATTGAGGAGTGT
AGAGGAACTCACACAGTTCTTCCTGCGTGAGATTCAATATGGCATCGAAGACACCGGAA
TTAGGGCGGGCATTATCAAGGTCGCGACCACAGGCAAGGTGACCCCCTTTCAGGAGTTA
GTGTTAAGGGCAGCTGCCCGGGCCAGCTTGGCCACCGGTGTTCCGGTAACCACTCACA
CGGCAGCAAGTCAGCGCGGTGGTGAGCAACAAGCCGCCATTTTTGAATCCGAGGGCTT
GAGCCCCTCACGGGTTTGTATTGGCCACAGCGATGATACTGACGATTTGAGCTATCTCA
CCGCCCTCGCTGCGCGCGGATACCTCATCGGTCTAGACCATATTCCGCACAGTGCGATT
GGTCTAGAAGATAATGCGAGTGCATCAGCCCTCCTGGGTATTCGTTCGTGGCAAACACG
GGCTCTCTTGATCAAGGCGCTCATCGACCAAGGCTACATGAAACAAATCCTCGTTTCGAA
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TGACTGGCTGTTCGGGTTTTCGAGCTATGTCACCAACATCATGGACGTGATGGATAGCG
TGAACCCCGACGGAATGGCCTTCATTCCACTGAGAGTGATCCCATTCCTACGAGAGAAG
GGTATTCCACAGGAAACGCTGGCAGGCATCACTGTGACTAACCCGGCGCGGTTCTTGTC
ACCGACCTTGCGGGCGTCATGAAGCTTGCTGCGGCACTCGAGCACCACCACCACCACC
ACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGC
TGA 
 

The reference sequence contains the wtPTE gene (in italics) flanked by plasmid sequence 

(underlined). This longer sequence was used to obtain sufficient coverage at the ends of the 

gene. 

Supplementary Method S4. NGS Step 1: Raw data processing 

The processing of Illumina sequencing data shown here was performed using computational 

resources provided by University of Cambridge High Performance Computing (CSD3), but it 

can also be done on a personal computer. All scripts are available at 

https://github.com/fhlab/TRIAD. 

The first part of analysis is done by the script count.sh. Briefly, the process consists of: 

1. Assembly of paired-end reads into a single, longer read where possible, using PEAR 

v. 0.9.10 10. Through inspection of sequencing quality in FASTQ files and monitoring 

of assembly statistics, the options chosen were: 

--keep-original --min-overlap 5 --min-assembly-length 0 --quality-threshold 15 --max-

uncalled-base 0.01 

2. Create an index for the reference with Bowtie2 v.2.3.4 11 and map both assembled 

and unassembled FASTQ reads, then sort resulting SAM files with samtools v.1.9 12 

to obtain the sequencing depth. 

At this point, 95% of the reads aligned to reference sequence. 

3. Based on tags in the SAM file, extract well-mapped reads and of those only keep the 

reads that contain mutations. Since this step detects any difference from reference, it 

will contain all reads with InDels as well as reads containing single point substitutions 

from sequencing errors. Hence, the number of substitutions in the final statistics is 

over-represented. 

4. Since accurate identification of InDel position is essential for analysing transposon 

sequence preference, we use the deterministic Needleman-Wunsch algorithm to 

obtain the most accurate possible global alignment of the read to reference. Although 

using the alignment in the SAM file directly is faster, accepting a longer processing 

time at this stage is an acceptable trade-off to obtain accurate statistics of the library 

composition. The alignment was done with the Emboss 6.6.0 13 implementation 

needleall, which compares many sequences to one. 

The standard options for alignment were modified to gap open penalty 15 and gap extend 

penalty 0.5, in order to accurately identify long (9 bp or more) InDels. The default gap open 

https://github.com/fhlab/TRIAD


 

 

SI-12 

penalty (10) tends to split long InDels into several short InDels separated by one or two 

nucleotides. 

Alternatively, the data can also be processed on a personal computer with the following 

modification: once reads are extracted from the SAM file, they should be filtered first for those 

that contain mutations. This reduces the size of resulting fasta and alignment files, which can 

otherwise exceed >10 GB. Development and testing of the scripts were done using this 

method on Linux Mint 18 in a virtual machine with two processor cores and 3 GB RAM. The 

corresponding code is available in count_PC.sh. 

Supplementary Method S5. NGS Step 2: Parsing and statistics generation 

The following analysis is done by script PTE_composition.py implemented in Python 3 with 

the following options: 

--reference full_fragment.fa (sequence given in above in Supplementary Methods 2.3, plus 

flanking sequence from the plasmid) 

--start_offset 200 (to ignore the preceding plasmid sequence) 

--end_tail 97 

 

1. Read in all FASTA multisequence alignment generated by previous step. 

2. Create a dictionary containing all associated information: reference name, library 

name (intended as functional activity fraction or in this case, a multiplexed library), 

sequencing depth, change in DNA/protein terms, relevant counts. The information is 

nested with DNA variants nested under relevant protein variants, since multiple DNA 

variants can result in the same protein mutation. The variant information is stored 

both in internal format with a functional description 

(substitution/insertion/deletion/frameshift, used to generate statistics) and according 

to Human Genome Variation Standard. 

3. Scan each pair of sequences (reference + aligned read) from the alignment, detect 

the mutation, translate to protein and add to dictionary. 

Once the count dictionary is complete, it can be used to infer the following: 

 Number of mutations per position (DNA or protein) 

 Transposon consensus sequence for preferred insertion site 

 Composition of insertions 

 How many expected deletions/insertions (depending on the library) per DNA position are 

present 

The data analysis, code to infer statistics and resulting figures are available in 

TRIAD_composition_figures.ipynb. 



 

 

SI-13 

Supplementary Method S6. Treatment of point mutations 

For reasons of computational efficiency, this pipeline focuses on reads that deviate from the 

reference. This difference may be a genuine mutation, a PCR error or a sequencing error. 

The resulting counts are therefore artificially enriched for many variants with a single 

nucleotide substitution, which each appears only once or perhaps twice. In Sanger 

sequencing (raw data not shown) we do not observe this kind of ‘background noise’, 

suggesting it should be disregarded in the NGS dataset. To corroborate this conclusion, we 

estimate the true number of point substitutions in the library by calculating the background 

substitution frequency from reads that align outside wtPTE, in the plasmid backbone, where 

no mutations were deliberately introduced during library construction. Such sequencing 

artefacts (with a single base pair substitution) occur in 3-4% of all reads, which corresponds 

to the error rate in the Illumina MiSeq NGS technology. An exact estimate is difficult due to a 

relatively low number of reads that align outside the fragment, as well as sequence 

dependence of polymerase errors – such that the error rate may be different in and out of the 

gene. Therefore, in the calculation of the proportion of frameshifts in the library, point 

mutations were simply counted as wild type (thus removing this ‘noise’).  

Supplementary Method S7. Treatment of InDel redundancy 

While pure substitution mutations can be placed very accurately, correct placement of InDels 

can be inherently ambiguous depending on the sequence context (as discussed in 1.2). 

InDels show some inherent redundancy, where distinct transposition and insertion / deletion 

events result in identical final sequence (Supplementary Figure S5B). For example, in the 

original sequence …nnGCTACTnn…, -3 bp deletions starting at position 2 (G---CT) and at 

position 3 (GC---T) result in the same final sequence: nnGCTnn (the remaining sequence 

context is abbreviated with n). The Needleman-Wunsch algorithm consistently (though 

arbitrarily) assigns this sequence to a deletion at position 2, such that any deletions 

originating from position 3 cannot be directly observed. 

Implications: 

 The raw counts that describe how many times a mutation was observed at which 

position, must be adjusted for this ambiguity, if we wish to infer the transposition 

sequence preference of the Mu transposon. The ambiguity can be partially corrected 

for deletions by generating a set of baseline reads that contain a -3 bp deletion at 

every wtPTE position and processing them in the same way as sequencing reads. 

Knowledge of these baseline counts allows us to split the observed counts in the -3 

bp library across all originating positions. Data processed in this way was the basis of 

the frequency plot in Figure 3A. 

 The diversity of mutations that can be observed is reduced compared to the maximal 

theoretical library diversity (Supplementary Figure S5). For example, in the -3 bp 

deletion library the theoretical diversity is one deletion per bp of gene length or 1000 

variants for wtPTE, but the observable diversity due to ambiguity is 748 variants 
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(based on the particular sequence of the wtPTE gene). Hence, the -3 bp deletions 

actually observed by deep sequencing at 639 positions reflect 85% (=639/748) 

coverage of all possible variants, not 64% (=639/1000). Similarly, the maximum 

diversity of insertion libraries is less than maximal theoretical diversity at DNA level is 

64 variants / triplet inserted / bp gene length. For all deletion and the +3 bp libraries, 

we calculated the theoretical diversity by computationally generating a perfect library 

(with script baseline.py), which contains every variant once (ie. 1 deletion of each 

length at each position, 1 insertion of each of the 64 codons at each positions), then 

processed this library in the same way as the NGS dataset. This shows the 

theoretical diversity in deletion libraries is ~0.75 deletion / bp gene length in wtPTE, 

while in the +3 bp library it is on average 46.22 variants / bp gene length. 

In this manuscript, we focus on discussing the observed variants, rather than the number of 

variants inferred, so the InDel redundancy is generally not corrected. The exception is the 

discussion of Mu transposon sequence preference (Figure 3A). 

Supplementary Method S8. Comparison of the effects of InDels vs. point 

substitutions on soluble expression and enzyme activity  

Two TRIAD libraries (-3 bp and +3 bp) and the TriNEx library were transformed into E. coli 

BL21(DE3) (not containing pGro7). Overall, 192 transformants (corresponding to 40 deletion 

variants, 76 insertions variants and 76 substitution variants) were randomly picked and their 

plasmids were subjected to Sanger sequencing to discard frameshifted variants. As a result, 

30 deletion, 27 insertion and 30 substitution variants were selected for further analysis of 

soluble expression and enzyme activity. The corresponding cells were transferred into 96-

deep well plates for growth and expression as described in the Methods section of the main 

text. Paraoxonase activity was measured in diluted (1:1000 and 1:100) cell lysates (soluble 

fraction) as described there. Changes in soluble expression levels relative to parent wtPTE 

were determined by SDS-PAGE analysis of the soluble fractions. The OD600 was used to 

normalize the amount to analyse by SDS-PAGE for each sample. To determine the soluble 

expression change relative to the parent for each variant, the intensity of the protein band of 

interest was measured using ImageJ and standardized against that of wtPTE.  
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SUPPLEMENTARY FIGURES 

 

 

 

Supplementary Figure S1 (Continued on next page, legend follows). 
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(Figure S1 continued) 

 

 

 

Supplementary Figure S1 (Continued on next page, legend follows). 
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(Figure S1 continued) 

Supplementary Figure S1. Schematic outline and timeline of the procedure for the 

generation of random InDel libraries 

A. Generation of deletion libraries.  

Step 1: The TransDel insertion library is generated by in vitro transposition of the engineered 

transposon TransDel into the plasmid containing the target gene followed by the subcloning of 

the fragment comprising the target gene and the transposon into a fresh plasmid.  

Step 2: MlyI digestion removes TransDel together with 3 bp of the original target gene and 

generates a single break per target gene variant.  

Step 3a: Intramolecular ligation results in the reformation of the target gene minus 3 bp, 

yielding a library of single variants with a deletion of 1 triplet 1.  

Step 3b: DNA cassettes dubbed Del2 and Del3 are then inserted between the break in the 

target gene to generate Del2 and Del3 insertion libraries.  

Step 4b: MlyI digestion removes Del2 and Del3 together with 3 and 6 additional bp of the 

original GOI, respectively.  

Step 5b: Intramolecular ligation results in the reformation of the target gene minus 6 and 9 bp, 

yielding libraries of single variants with a deletion of 2 and 3 triplets, respectively. Red vertical 

lines indicate deletions. 

B. Generation of insertion libraries.  

Step 1: The TransIns insertion library is generated by in vitro transposition of the engineered 

transposon into the target gene.  

Step 2: digestion by NotI and MlyI removes TransIns.  

Step 3: DNA cassettes dubbed Ins1, Ins 3 and Ins3 (with respectively 1, 2 and 3 randomized 

bp triplets at one of their extremities; indicated in blue) are then inserted between the break in 

the target gene to generate the corresponding Ins1, Ins2 and Ins3 insertion libraries.  

Step 4: AcuI digestion and 5’end digestion by the Klenow fragment remove the cassettes, 

leaving the randomized triplet(s) in the original target gene.  

Step 5: Intramolecular ligation results in the reformation of the target gene plus 3, 6 and 9 

random bp, yielding libraries of single variants with an insertion of 1, 2 and 3 triplets, 

respectively. Purple vertical lines indicate insertions. 
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Supplementary Figure S2 (Continued on next page, legend follows). 
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(Figure S2 continued) 

 

 

Supplementary Figure S2 (Continued on next page, legend follows). 
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(Figure S2 continued) 

 

 

 

Supplementary Figure S2. Engineered transposons and cloning cassettes used in 

TRIAD. 

Sequences of (A) Mu transposons TransDel and TransIns, (B) deletion cassettes Del2 and 

Del3, (C) insertion cassettes Ins1, Ins2 and Ins3 (n = 1, 2 or 3 nucleotide triplets), (D) Maps of 

vectors pUC-57-TransDel, -TransIns, -Del2/3, -Ins1/2/3.  Note that in (C) the location of the 

KanR gene vs the NNN codons is identical to the depiction in Fig. 2B (where the restriction 

sites appear flipped around), but in both cases NNN codons appear next to the MlyI 

restriction site, which is upstream of the KanR expression cassette.  
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Supplementary Figure S3: Sequence of the synthetic wtPTE gene and its 

corresponding protein product 

This gene was designed without MlyI, AcuI and NotI restriction sites and cloned into pID-Tet 

or pET-strep vectors using NcoI and HindIII (underlined). Start and stop codons are shown in 

bold. The resulting protein (in red) was expressed in fusion with a Strep-tag II peptide (shown 

in green) at its N-terminus and its sequence corresponds to the one referred to as PTE-R0 in 

14, 15 and as wtPTE in 8, 16. Residues were numbered according to PDB 4PCP. 
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Supplementary Figure S4 (Continued on next page, legend follows). 
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(Figure S4 continued) 

 

 

Supplementary Figure S4: Vectors for the generation of InDel variant libraries 

These vectors are designed for the construction of TRIAD libraries and expression of the 

generated variants (feature not used in the present study). They were designed and 

assembled (see supplementary methods) from different components separated by three 

restriction sites: (i) ampicillin resistance gene (AmpR; AatII/SpeI) forming an operon with TetR 

(encoding the tetracycline repressor) in the case of pID-Tet, (ii) origin of replication (ori; 

SpeI/AflII), and (iii) expression cassette (AflII/AatII) consisting of a promoter (T7 and Tet for 

pID-T7 and pID-Tet, respectively), a multiple cloning site (MCS), sequences encoding affinity 

tags (i.e. Strep-tag II and 6xHis-tag) and the T7 terminator sequence. These vectors do not 

contain any MlyI, AcuI and NotI restriction sites in their sequence. (A) Maps of vector pID-T7 
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and pID-Tet. (B) Map and sequence of expression cassette for pID-T7, where position T8 of 

the T7 promoter was mutated to C to remove MlyI site as in 9. (C) Map and sequence of 

expression cassette for pID-Tet. (D) Map and sequence of AmpR cassette (silent mutations to 

remove AcuI and FokI sites are indicated). 
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Supplementary Figure S5: Theoretical diversities of the InDel libraries obtained with 

TRIAD 

(A) This plot shows the theoretical diversity per transposon insertion site within the target 

gene for each type of InDel generated using TRIAD. Only one deletion, regardless of its 

length, can occur at a given transposition insertion site. Conversely, insertion diversity is 

related to the length of the randomized inserted triplet nucleotides (43, 46 and 49 for one, two 

and three triplet insertions, respectively). Transposon insertion can occur at each position of 

the target DNA, providing it does not affect the restriction sites that are necessary in the 
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various subcloning steps of the TRIAD procedure. Therefore, the theoretical diversity for each 

TRIAD library is obtained by multiplying the values plotted in this figure with the length of the 

target DNA. In the case of a target gene with the length of wtPTE (~1,000 bp), the theoretical 

diversity for deletion libraries is ~103 while it is 6.4x104, ~4.1x106 and ~2.6x108 for one, two 

and three triplet insertions, respectively. (B) Examples of InDel redundancy in the case of 

deletions (-3 bp) or insertions (+3 bp) of a triplet resulting in the same DNA variants. (C) 

Theoretical diversities accessible by applying TRIAD to the wtPTE gene sequence in TRIAD 

libraries -3, -6, -9, +3 and +6 bp. The diversities were determined computationally by using 

the python script baseline.py to generate fasta reads with all possible mutations, which were 

then aligned and counted in the exact same way as the physical libraries. 
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Supplementary Figure S6 (legend next page) 



 

 

SI-28 

Supplementary Figure S6: Sequencing coverage in the NGS of the TRIAD libraries of 

wtPTE. 

The final total depth from all assembled and unassembled reads that map to the reference is 

shown along the entire sequencing fragment. The proportion of reference DNA corresponding 

to wtPTE gene is shown on shaded background. Coverage for insertion libraries is 

approximately 3× that of deletion libraries, due to higher loading onto the MiSeq flow-cell in 

order to capture the higher diversity of insertion libraries better. Despite a decrease in 

coverage around position 200, good coverage is maintained across the entire wtPTE gene. 
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Supplementary Figure S7 (legend next page) 
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Supplementary Figure S7: Distribution of observed number of reads per mutation. 

The histograms show how many mutations are observed once, twice, thrice, ten times or 

more. In deletion libraries we find that most mutations detected are supported by 10-40 

observations (each observation is a single read in raw sequencing data). 

The bias of transposon site preference results in InDels being observed more often at some 

positions than other. In the deletion libraries, most mutations are supported by < 50 reads 

(see Table S6), but there is a long tail generated by positions that are close to the Mu 

transposon consensus – this is aggregated into one bin in the histograms in this Figure for 

clarity. Because of the large diversity of insertion libraries, variants are generally observed 

with lower frequencies (x-axis) compared to the deletion libraries.  
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A 

 

Supplementary Figure S8 (Continued on next page, legend follows). 

  

+ 6 bp 

+ 9 bp 
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(Figure S8 continued) 

B 

 

Supplementary Figure S8 (legend next page) 
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Supplementary Figure S8: Number of distinct insertions observed per position in 

wtPTE. 

(A) Distribution and number of distinct (or unique) insertions per DNA position determined by 

deep sequencing in +6 bp and + 9 bp bp libraries., compared to the mean per position.In 

analogy to Figure 3C in the main text, this figure shows the number of observed insertions at 

each position where mutations are observed. The possible diversity of +6 bp and +9 bp 

insertions is much higher than for +3 bp library, which results in more pronounced high 

diversity “spiked” at positions where transposon insertion is favoured. The horizontal line 

shows the mean number of observed insertions per position (105 and 102 for +6 bp and +9 

bp, respectively). These results are not corrected for codon ambiguity, which increases the 

unevenness of the distribution. 

(B) Distribution of the number of positions in the gene encoding wtPTE versus the number of 

distinct insertions observed by deep sequencing.  
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Supplementary Figure S9: Distribution of nucleotide bases in the randomized inserts 

of the +3, +6 and +9 bp libraries 

The nucleotide percentage distributions of the in-frame insertions observed among all wtPTE 

variants observed during deep sequencing. Every detected insertion contributes equally to 

this distribution, regardless of frequency in the library. 
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Supplementary Figure S10: Relationship between mutational tolerance and solvent-

accessible surface area (SASA) in wtPTE 

The solvent accessible surface area (SASA) of residues mutated (either InDel or substitution) 

in wtPTE variants retaining ≥50% of the parental paraoxonase activity was calculated from 

the structure of wtPTE (PDB code: 4PCP) using the PISA web server at the European 

Bioinformatics Institute (http://www.ebi.ac.uk/pdbe/prot_int/pistart.html) 17. Relative accessible 

surface area (RSA) was defined as the ratio of the SASA for a given residue within the 

structured protein vs. in the free residue 18. Residues were classified as core for RSA < 0.25, 

and surface for RSA ≥ 0.25 19. Mutated residues are listed in Supplementary Table S10.
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Supplementary Figure S11: Comparison of the effects on activity and solubility (i.e., kinetic stability) between InDel (from TRIAD libraries -3 bp 

and +3 bp) and substitution variants (from TriNEx library) of wtPTE. 

Upon transformation of the DNA libraries into E. coli BL21(DE3), a total of 192 colonies (64 per library) were selected randomly, and their corresponding PTE 

variants sequenced to discard the ones with frameshifting mutations. The appropriate number of variants with non-frameshifting mutations were then 

screened for phosphotriesterase activity and soluble expression in the absence of GroEL/ES.Changes in paraoxonase (PTE) activity are determined relative 

to those of wtPTE by comparing the initial rates in cell lysates measured under identical conditions with 200 µM of the native paraoxon substrate (see 

Methods section and Tables S11-12). Relative soluble expression levels are determined as the ratio in protein expression levels in the clear lysate 

(supernatant) between variants and the parent enzyme wtPTE measured by SDS-PAGE (See Methods and Tables S11-12).  

Deletions (-3 bp) Insertions (+3 bp) Substitutions

Strongly destabilizing

Mildly destabilizing

Neutral

Strongly destabilizing

Mildly destabilizing

Neutral

Strongly destabilizing

Mildly destabilizing

Neutral
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Supplementary Figure S12: Activity trade-offs in wtPTE InDel variants improved in 

arylesterase activity. 

Activity trade-offs among InDel wtPTE variants improved in arylesterase activity (AE) hits 

(Supplementary Table S13) were evaluated by calculating the specificity ratio, i.e. the ratio 

between the level of AE activity in cell lysate and that of phosphotriesterase activity (PTE). 

This plot shows the specificity ratio for each InDel variants listed in Supplementary Table S13. 

The average (~260) and median (~17) specificity ratios are also indicated. 
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Supplementary Figure S13: Insertions and deletions improving the arylesterase 

activity of wtPTE by > 2-fold. 

(A) Location and occurrence of adaptive insertions and deletions in wtPTE. InDels 

improving arylesterase activity (AE) towards 4-nitrophenyl butyrate (4-NPB; top plot) and 2-

naphthyl hexanoate (2-NH; bottom plot) are shown according to their location in the wtPTE 

sequence and the number of their occurrences.  

(B) Average and median activity change in AE-improved wtPTE variants. Values refer to 

the activity change of all AE-improved variants relative to wtPTE obtained by comparing the 

initial rates v0 for the hydrolysis of paraoxon (PTE), 4-NPB or 2-NH to that of wtPTE at 200 

μM substrate concentration, resulting in a dimensionless ratio. The average change value 

was determined as the geometric mean of the relative activities of the variants listed in 

Supplementary Table S13 and the median change corresponds to the relative activity lying at 

the midpoint of the recorded relative activities.  
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Supplementary Figure S14: Soluble and insoluble expression of PTE hits in the 

presence and absence of GroEL/ES chaperones. 

Screening of InDel (TRIAD) libraries of wtPTE variants for increased arylesterase activity was 

performed in the presence of co-expressed GroEL/ES chaperones to buffer destabilizing and 

adaptive mutations. A comparison of PTE expression in E. coli lysates (P: pellet; S; soluble 

fraction) of the parent wtPTE and four characterized hits (see Table 3) shows slight increases 

of PTE expression in the presence of chaperone (see Table S14 for a quantitation of the band 

intensity). These suggest that the inclusion of GroEL/ES chaperones was helpful, but not 

crucial for the success of the experiment. The gels images are a representative 

representation of an experiment conducted in triplicate. 



 

Supplementary Figure S15 (Continued on next page, legend follows) 

(A)   PTE      AE 

∆A270L271L272G273 

  

P256R/G256aA256b 

  

S256aG256b 
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  PTE       AE 

G311a 

  

 

(B) 

  

 

Supplementary Figure S15: Kinetic characterization of InDel wtPTE variants with 

improved arylesterase activity. 

(A) Michaelis-Menten plots for purified AE InDel hits. Phosphotriesterase (PTE; substrate: 

paraoxon) and arylesterase (AE; substrate: 2-Naphthyl Hexanoate) activities were measured in 

triplicates and error bars show standard deviation. Conditions: [S]=0–2 mM; [Tris-HCl] = 100 mM 

(pH 7.5); [ZnCl2] = 200 µM; Enzyme concentrations: for PTE activity, [Enzyme] = 5 (for 

P256R/G256aA256b and G311a) or 10 nM (for ∆A270L271L272G273 and S256aG256b); for AE 

activity, [Enzyme] = 200 nM (for ∆A270L271L272G273, P256R/G256aA256b and S256aG256b) 
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or 20 nM (for G311a); T = 25 °C. KM and kcat were determined by fitting the initial rates (V0) at 

each concentration to the Michaelis-Menten model using KaleidaGraph (Synergy Software). 

(B) Correlation between activities measured in cell lysate and using purified enzyme for 

variants selected for improved arylesterase activity. All measurements were performed at 200 

μM substrate. Activities in cell lysate (enzyme co-expressed with GroEL/ES) are given relative to 

wtPTE (see SupplementaryTable S13). Kinetic data for wtPTE and variant H254R had been 

previously reported 8, 14.  

 



 

 43 

wtPTE: Tm 78.1 ± 0.2°C 

 

∆A270L271L272G273: Tm 82 ± 1°C 

 

P256R/G256aA256b: Tm 84.3 ± 0.3°C 

Supplementary Figure S16 (Continued on next page, legend follows). 
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S256aG256b: Tm 77.5 ± 0.4°C & 85.6 ± 0.2°C 

 

G311a: Tm 75.2 ± 0.3°C 

 

Supplementary Figure S16: Tm measurement of wtPTE and four selected hits 

Thermostability of five purified proteins was measured using BioRad CFX Connect real-time 

PCR instrument by monitoring the binding of SYPRO Orange dye to unfolded protein. The 

sample solutions were equilibrated at 25°C for 15 minutes, then the temperature was raised 

to 95 °C in 0.5 °C increments with 30 s equilibration per increment. Plots on the left hand side 

show the fluorescence trace for each variant and right plots the first derivative with respect to 

time. The charts include data from all wells with a defined melting curve, which were obtained 

while screening multiple protein and SYPRO dye concentrations, resulting in different signal 

intensity between conditions. The results are given as mean ± standard deviation. 

 



 

 

 

 

 

 

Supplementary Figure S17 (Continued on next page, legend follows). 
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Supplementary Figure S17: Application of TRIAD for the generation of focused InDel 

libraries.  

(A) Schematic outline of the procedure for the generation of focused InDel libraries. 

Transposon (i.e., TransDel or TransIns) insertion is carried out on a plasmid containing only 

the target sequence, ‘shielding’ the rest of the gene from transposon integration. Target 

sequences are excised by SapI digestion, and those containing the inserted transposon 



(Figure S17 continued) 
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purified by virtue of their larger size. These fragments can subsequently be cloned into a 

‘SapI-adapter’ plasmid, re-forming the whole gene; now containing transposon only in the 

target region. Finally, InDel mutagenesis is achieved following the cloning steps illustrated in 

Figure 1 and Figure S1. 

(B) Mechanism for the cloning of focused transposon insertion libraries by seamless cloning 

using the type IIS restriction enzyme SapI. Seamless cloning with SapI allows cloning the 

target sequence without altering the original DNA sequence of the gene of interest. In the 

illustrated example, sequences flanking the target region (TGC and ATG) belong to the gene 

of interest. Upon digestion with SapI cohesive ends are generated to enable the seamless 

fusion of the target sequence (containing the inserted transposon) within its original gene 

sequence. Note that SapI is used here as an example and that any other analogous type IIS 

restriction enzyme (e.g., BsaI or FokI) could be used to achieve this strategy. 
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SUPPLEMENTARY TABLES 

 

Supplementary Table S1. Mutagenesis efficiency of TRIAD – individual variants 

Libraries were generated from wtPTE. Upon the final transformation step, randomly chosen variants were sequenced by the Sanger method (see also 

Supplementary Tables S2-3). In-frame InDels (i.e., InDels of multiple of three nucleotides) can result in adjacent substitutions (enumerated in the “InDels with 

adjacent substitution” sub-category) depending on the insertion point of the transposon. The number of unique sequences was recorded among the observed 

correct sequences. The Unique sequences sub-category refers to in-frame InDels that are observed at least once (see also Supplementary Table S3). 

 

  
Deletions 

 
Insertions 

  
Library 

 
-3 bp -6 bp -9 bp All deletions 

 
+3 bp +6 bp +9 bp All insertions 

 
All Indels 

Total number of sequenced variants 
 

21 21 22 64 (100%) 
 

23 16 18 57 (100%) 
 

121 (100%) 

In-frame InDels 
 

21 17 17 55 (86%) 
 

11 12 12 35 (61%) 
 

90 (74%) 

InDels with no adjacent substitution 
 

17 12 9 38 (59%) 
 

7 10 8 25 (44%) 
 

63 (52%) 

InDels with adjacent substitution 
 

4 5 8 17 (27%) 
 

4 2 4 10 (18%) 
 

27 (22%) 

Unique sequences 
 

20 17 17 54 (84%) 
 

11 12 12 35 (61%) 
 

89 (74%) 

Frameshifting InDels 
 

0 4 5 9 (14%) 
 

12 4 6 22 (39%) 
 

31 (26%) 

 



 

 

Supplementary Table S2. Sequence analysis of naïve InDel libraries of wtPTE 

obtained with TRIAD. 

Sequences were determined from randomly chosen variants upon generation of the libraries. 

Residues are numbered according to the crystal structure of wtPTE (PDB: 4PCP). The 

symbol ∆ before a residue (or a group of residues) signifies that this (or these) residue(s) 

have been deleted. Inserted residues are labelled using the number of the position after 

which they are inserted and alphabetical order (e.g., glutamine and tyrosine residues inserted 

in this order after the residues at position 230 would be labelled Q230aY230b). 

 

Library 
Variant 
number 

DNA change 
Length 
change (bp) 

Protein mutation 

-3 bp 1 A(TGG)C -3 ∆G157 

 
2 A(GGA)A -3 ∆E144 

 
3 T(TGC)G -3 L66C/∆R67 

 
4 C(CAC)A -3 ∆H230 

 
5 G(GCG)A -3 ∆A126 

 
6 C(CGG)G -3 ∆R189 

 
7 T(TCG)A -3 F104Y/∆D105 

 
8 G(CTA)T -3 ∆Y309 

 
9 A(TGA)A -3 ∆M293 

 
10 G(TCT)A -3 ∆L262 

 
11 A(AGA)T -3 ∆E263 

 
12 C(TGG)G -3 L272R/∆G273 

 
13 G(CCG)A -3 ∆A114 

 
14 C(TGA)G -3 ∆L330 

 
15 C(GGG)C -3 R280P/∆A281 

 
16 C(TAC)G -3 ∆L336 

 
17 T(CTA)G -3 ∆L252 

 
18 G(GAG)T -3 ∆E181 

 
19 C(TAC)A -3 ∆Y292 

 
20 C(TAC)A -3 ∆Y292 

 
21 A(TGG)G -3 ∆M33 

-6 bp 1 AAT(GACTGGC)TGT -7 frameshift 

 
2 TCC(GAGGGCT)TGAG -7 frameshift 

 
3 ATC(ATGGAC)GTG -6 ∆M314D315 

 
4 CAA(TACCGT)GCG -6 N38K/∆T39K40 

 
5 TAA(CCACTC)ACA -6 T199N/∆T200H201 

 
6 AGG(CTACAT)GAA -6 ∆Y292M293 

 
7 CCA(CTGAGA)GTG -6 ∆L330R331 

 
8 TCG(TGGCAA)ACA -6 ∆W277Q278 

 
9 TCG(CGGGCT)GCC -6 ∆R118A119 

 
10 CGG(TAACCACTCAC)ACG -11 frameshift 

 
11 GAT(AATGCG)AGT -6 ∆N265A266 

 
12 ATT(CCTACG)AGA -6 F335L/∆L336R337 

 
13 GAC(TAACCC)GGC -6 ∆N353P354 
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Library 
Variant 
number 

DNA change 
Length 
change (bp) 

Protein mutation 

 
14 AAT(CCGAGG)GCT -6 S218C/∆E219G220 

 
15 GAG(GAGTGT)AGA -6 ∆S142V143 

 
16 GTG(CGCGGT)CCT -6 ∆R41G42 

 
17 TTG(GCCGGA)GTT -6 ∆P70E71 

 
18 AAC(CCCGAC)GGA -6 ∆P322D323 

 
19 TCC(GAGGGC)TTG -6 ∆E219G220 

 
20 GGT(GTTCCGG)TAA -7 frameshift 

 
21 ACC(CGGCGC)GGT -6 P354R/∆A355R356 

-9 bp 1 CCC(TCACGGGTTT)GTA -10 frameshift 

 
2 CGT(TCGTGGCAA)ACA -9 ∆S276W277Q278 

 
3 CTT(CCTGCGTGA)GAT -9 F150L-∆L151R152E153 

 
4 AAA(AGGCTGTGA)GAG -9 ∆K82A83V84 

 
5 AAC(ATCATGGAC)GTG -9 ∆I313M314D315 

 
6 ATT(CCACTGAGA)GTG -9 ∆P329L330R331 

 
7 CAG(CTCGGCAGG)ATT -9 S61R/∆S62A63G64 

 
8 GCA(AGTCAGCGC)GGT -9 ∆S205Q206R207 

 
9 CGA(CCACAGGCA)AGG -9 ∆T172T173G174 

 
10 ACC(GGCTTGTGG)CTC -9 ∆G129L130W131 

 
11 AAG(GGCGGCCGC)CCG -9 R185S/∆A186A187A188 

 
12 GCCCC -> GAATTC +1 frameshift 

 
13 TCA(TCGACCAAG)GCT -9 I288S/∆D289Q290G291 

 
14 CCT(CCATGGGCG)ATC -9 S32Y/∆M33G34D35 

 
15 CTC(TAGCGGAAA)AGG -9 L79Q/∆A80E81K82 

 
16 GTT(TCGCGGGCTG)CCG -10 frameshift 

 
17 CGA(TTGGTCTAG)AAG -9 I260K/∆G261L262E263 

 
18 TCA(AGGCGCTCA)TCG -9 K285M/∆A286L287I288 

 
19 GAT(CTCGGTCGC)GAC -9 ∆L106G107R108 

 
20 C(TCG)C -3 L243P/∆A244 

 
21 GCT(GCGCGCGGAT)ACC -10 frameshift 

 
22 GAT(ACTGACGAT)TTG -9 ∆T234D235D236 

+3 bp 1 TT+C GG+G CGC +3 L87F/G87a 

 
2 TT+G TT+A GTG +3 L182a 

 
3 TCCTAT+TT+CACAAT +2 frameshift 

 
4 CTA +CGA+ GAA +3 R262a 

 
5 TGGCA -> TTTA -1 frameshift 

 
6 GA+C AT+G GAA +3 E144D/M144a 

 
7 ACG -> AGGTG +2 frameshift 

 
8 TCG +ACT+ TGG +3 T276a 

 
9 ACC+AT+CGG +2 frameshift 

 
10 TT+A CC+C CTG +3 F150L/P150a 

 
11 CCGA -> CACGGA +2 frameshift 

 
12 AGA+CT+GGA +2 frameshift 

 
13 TTC+T+CGG +1 frameshift 

 
14 AA+A TA+T ACC +3 N38K/Y38a 
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Library 
Variant 
number 

DNA change 
Length 
change (bp) 

Protein mutation 

 
15 GGT+AA+CTA +2 frameshift 

 
16 ATTG -> AATATG +2 frameshift 

 
17 GGT +GTT+ CTA +3 V261a 

 
18 ACC +TTC+ CAC +3 F54a 

 
19 GG+A TT+C ATC +3 F157a 

 
20 TAG+GA+AAG +2 frameshift 

 
21 GAT +AAT+ GAT +3 N232a 

 
22 TCT+AC+CCG +2 frameshift 

 
23 TGT -> TTTT +1 frameshift 

+6 bp 1 GG+G GGG AT+C +6 G229aI229b 

 
2 TGG +ATG TTT+ CCG +6 M69aF69b 

 
3 CAG +AAT CTG+ GAA +6 N343aL343b 

 
4 TCC +CAG AGT+ GAG +6 Q47aS47b 

 
5 A+AT GAA C+TC +6 I44N/E44aL44b 

 
6 C+GG ATC C+CC +6 R177aI177b 

 
7 ACC+TCGTC+GGT +5 frameshift 

 
8 CG+G AAA TA+C +6 K76aY76b 

 
9 CC+G ATG CC+C +6 M178aP178b 

 
10 GGC +GTT AGC+ TAC +6 V291aS291b 

 
11 GG+G TTA AC+C +6 L157aT157b 

 
12 TGG +GGT GTA+ CCG +6 G69aV69b 

 
13 see note [1] -61 frameshift 

 
14 T+GG TTC G+TG +6 L66W/F66aV66b 

 
15 CCA+GGTAT+CAG +5 frameshift 

 
16 TTA+GTGGC+TCA +5 frameshift 

+9 bp 1 GCC+GTAAGGTT+CAG +8 frameshift 

 
2 ACC +GAT TAA TGC+ CAC +9 D54a - Stop 

 
3 GCT +TGT TGT CCT+ CTC +9 C281aC281bP281c 

 
4 GA+A AGC TAT GA+G GAA +9 S144aY144bE144c 

 
5 GTC+CCCACGTCT+CGA +8 frameshift 

 
6 CTG+GGGTATGG+CGT +8 frameshift 

 
7 TC+A TAT GGA AT+C +9 Y218aG218bI218c 

 
8 GGT+CCTCTGGG+TTG +8 frameshift 

 
9 CG+G GTG TGT CG+CA +9 V76aC76bR76c 

 
10 GA+A ACT GCA AA+C +9 

D235E/T235aA235bN235
c 

 
11 G+GA TCG TGG T+CC +9 A90G/S90aW90bS90c 

 
12 CC+A GAG ACC GT+G +9 E256aT256bV256c 

 
13 C+CG AGT TGA T+TG +9 L330P/S330a - Stop 

 
14 CA+G GGT GGT AT+C +9 H57Q/G57aG57bI57c 

 
15 TAC +ATC GTT TCG+ ATG +9 I292aV292bS292c 

 
16 TCA+CCCGTCT+CGG +7 frameshift 

 
17 GG+A ACA GTG CG+T +9 T273aV273bR273c 

 
18 ATG+CTTTGGGG+GCA +8 frameshift 
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[1] This variant showed a large sequence substitution where CCATGGGCGAT-

CGGATCAATACCGTGCGCGGTCCTATCACAATCTCCGAGGCGGGTTTCACACTAACCC 

(modified sequence in bold) was exchanged for CTCCAGGC (in bold), resulting in a 61 bp 

deletion. 



 

 

Supplementary Table S3. Frequency of in-frame InDels observed among randomly 

sequenced wtPTE variants (as recorded in Table S2). 

Residues are numbered according to the crystal structure of wtPTE (PDB: 4PCP). 

Protein position Observed InDel Library Frequency 
Variant 
name 

32 S32Y/∆M33G34D35 -9 bp 1 15 

33 ∆M33 -3 bp 1 21 

38 N38K/∆T39K40 -6 bp 1 4 

38 N38K/Y38a +3 bp 1 14 

41 ∆R41G42 -6 bp 1 18 

44 I44N/E44aL44b +6 bp 1 5 

47 Q47aS47b +6 bp 1 4 

54 F54a +3 bp 1 19 

54 D54a - Stop +9 bp 1 2 

57 H57Q/G57aG57bI57c +9 bp 1 16 

61 S61R/∆S62A63G64 -9 bp 1 8 

66 L66C/∆R67 -3 bp 1 3 

66 L66W/F66aV66b +6 bp 1 17 

69 M69aF69b +6 bp 1 2 

69 G69aV69b +6 bp 1 14 

70 ∆P70E71 -6 bp 1 19 

76 K76aY76b +6 bp 1 9 

76 V76aC76bR76c +9 bp 1 9 

79 L79Q/∆A80E81K82 -9 bp 1 16 

82 ∆K82A83V84 -9 bp 1 4 

87 L87F/G87a +3 bp 1 1 

90 A90G/S90aW90bS90c +9 bp 1 11 

104 F104Y/∆D105 -3 bp 1 7 

106 ∆L106G107R108 -9 bp 1 20 

114 ∆A114 -3 bp 1 13 

118 ∆R118A119 -6 bp 1 9 

126 ∆A126 -3 bp 1 5 

129 ∆G129L130W131 -9 bp 1 11 

142 ∆S142V143 -6 bp 1 17 

144 ∆E144 -3 bp 1 2 

144 E144D/M144a  +3 bp 1 6 

144 S144aY144bE144c +9 bp 1 4 

150 F150L/∆L151R152E153 -9 bp 1 3 

150 F150L/P150a +3 bp 1 10 

157 ∆G157 -3 bp 1 1 

157 F157a +3 bp 1 20 

157 L157aT157b +6 bp 1 12 

172 ∆T172T173G174 -9 bp 1 10 

177 R177aI177b +6 bp 1 7 

178 M178aP178b +6 bp 1 10 
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Protein position Observed InDel Library Frequency 
Variant 
name 

181 ∆E181 -3 bp 1 18 

182 L182a +3 bp 1 2 

185 R185S/∆A186A187A188 -9 bp 1 12 

189 ∆R189 -3 bp 1 6 

199 T199N/∆T200H201 -6 bp 1 5 

205 ∆S205Q206R207 -9 bp 1 9 

218 S218C/∆E219G220 -6 bp 1 16 

218 Y218aG218bI218c +9 bp 1 7 

219 ∆E219G220 -6 bp 1 22 

229 G229aI229b +6 bp 1 1 

230 ∆H230 -3 bp 1 4 

232 N232a +3 bp 1 22 

234 ∆T234D235D236 -9 bp 1 23 

235 D235E/T235aA235bN235c +9 bp 1 10 

252 ∆L252 -3 bp 1 17 

256 E256aT256bV256c +9 bp 1 12 

260 I260K/∆G261L262E263 -9 bp 1 18 

261 V261a +3 bp 1 17 

262 ∆L262 -3 bp 1 10 

262 R262a +3 bp 1 4 

263 ∆E263 -3 bp 1 11 

265 ∆N265A266 -6 bp 1 13 

272 L272R/∆G273 -3 bp 1 12 

273 T273aV273bR273c +9 bp 1 19 

276 ∆S276W277Q278 -9 bp 1 2 

276 T276a +3 bp 1 8 

277 ∆W277Q278 -6 bp 1 8 

280 R280P/∆A281 -3 bp 1 15 

281 C281aC281bP281c +9 bp 1 3 

285 K285M/∆A286L287I288 -9 bp 1 19 

288 I288S/∆D289Q290G291 -9 bp 1 14 

291 V291aS291b +6 bp 1 11 

292 ∆Y292 -3 bp 2 19, 20 

292 ∆Y292M293 -6 bp 1 6 

292 I292aV292bS292c +9 bp 1 17 

293 ∆M293 -3 bp 1 9 

309 ∆Y309 -3 bp 1 8 

313 ∆I313M314D315 -9 bp 1 5 

314 ∆M314D315 -6 bp 1 3 

322 ∆P322D323 -6 bp 1 21 

329 ∆P329L330R331 -9 bp 1 6 

330 ∆L330 -3 bp 1 14 

330 ∆L330R331 -6 bp 1 7 

330 L330P/S330a - Stop +9 bp 1 14 
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Protein position Observed InDel Library Frequency 
Variant 
name 

335 F335L/∆L336R337 -6 bp 1 14 

336 ∆L336 -3 bp 1 16 

343 N343aL343b +6 bp 1 3 

353 ∆N353P354 -6 bp 1 15 

354 P354R/∆A355R356 -6 bp 1 24 
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Supplementary Table S4A: Deep sequencing coverage statistics. 

All six libraries were sequenced as part of one MiSeq 2×75 bp run. Since insertion libraries 
have a greater theoretical diversity, they were loaded onto the flow cell at 3× the amount of 
deletion libraries. 

 

Library  -3 bp -6 bp -9 bp 

Total reads  1.04×106 1.09×106 8.99×105 

Assembled reads  7.50×105 8.22×105 6.48×105 

Alignment rate  96.4% 95.1% 90.3% 

Unassembled reads  2.86×105 2.67×105 2.51×105 

Alignment rate  93.5% 95.9% 88.6% 

Total aligned reads  9.90×105 1.04×106 8.07×105 

Mean ± SD coverage 
per base 

 (8.59±1.7)×104 (8.84±1.7)×104 (6.99±1.6)×104 

 
 

Library  +3 bp +6 bp +9 bp 

Total reads  3.36×106 3.38×106 3.09×106 

Assembled reads  2.56×106 2.51×106 2.47×106 

Alignment rate  97.1% 95.0% 95.8% 

Unassembled reads  8.08×105 8.67×105 6.28×105 

Alignment rate  96.6% 94.0% 95.6% 

Total aligned reads  3.27×106 3.20×106 2.968×106 

Mean ± SD coverage 
per base 

 (2.76±0.54)×105 (2.73±0.58)×105 (2.38±0.45)×10
5 
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Supplementary Table S4B: Proportion of frameshifts 

The proportion of variants containing frameshifts was estimated as follows: 
 

𝐸𝑠𝑡. % 𝑓𝑟𝑎𝑚𝑒𝑠ℎ𝑖𝑓𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 =  
𝑓𝑟𝑎𝑚𝑒𝑠ℎ𝑖𝑓𝑡 𝑟𝑒𝑎𝑑𝑠 𝑎𝑙𝑙 𝑟𝑒𝑎𝑑𝑠⁄

𝑟𝑒𝑎𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑔𝑒𝑛𝑒⁄
 

 
Where read length is equal to 2×75=150 bp and the gene length is 999 bp. 

 

 

Deletions 

Sequencing reads -3 bp -6 bp -9 bp 

All reads 9.90×105 1.04×106 8.07×105 

Reads with target mutations 74923 48911 42358 

% with target mutations 7.6% 4.7% 5.3% 

Reads with frameshifts 6082 30813 17163 

% of reads with frameshifts 0.6% 3.0% 2.1% 

Est. % frameshifted variants 4.1% 19.8% 14.2% 

 
 

 

Insertions 

Sequencing reads +3 bp +6 bp +9 bp 

All reads 3.27×106 3.20×106 2.968×106 

Reads with target mutations 121089 145374 115899 

% with target mutations 3.7% 4.5% 3.9% 

Reads with frameshifts 179412 139738 117505 

% of reads with frameshifts 5.5% 4.4% 4.0% 

Est. % frameshifted variants 36.6% 29.1% 26.4% 
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Supplementary Table S5: TransDel consensus site preference 

(see WebLogo in Figure 3A) 

Mu transposons insert within a five-nucleotide sequence, which is duplicated during the 

insertion. The insertion preference of TransDel in wtPTE gene can be calculated with 

precision from the location of -3 bp deletions, because these deletions are symmetrical and 

centred within the insertion site. The consensus site preference is built from detected -3 bp 

mutations, weighed according to frequency of occurrence and adjusted for orientation of 

transposon and GC composition. 

 

Position A C G T 

1 14.4% 34.4% 25.7% 25.5% 

2 12.4% 38.3% 17.7% 31.7% 

3 16.5% 33.5% 33.5% 16.5% 

4 31.7% 17.7% 38.3% 12.4% 

5 25.5% 25.7% 34.4% 14.4% 
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Supplementary Table S6: Statistics on number of reads supporting each variant  

Each observed variant is associated with a count: this gives the number of reads (either an 

assembled paired-end 2×75 bp or a single end read from an unassembled pair) that support 

the detection of that variant. Some variants are observed more frequently than others. This 

frequency reflects the inherent bias of Mu transposon insertion, amplification bias during 

transformations (where one variant may randomly grow to greater abundance than another), 

and stochastic fluctuations resulting from sequencing. This table summarizes the median 

count in the -3 bp and +3 bp libraries, as well as maximum and interquartile range. The 

distribution is shown in Supplementary Figure S7 as a histogram. 

Count wtPTE -3 bp wtPTE + 3bp 

Minimum observed 0 0 

Q1 4.9 11.0 

Median 22.0 47.2 

Q3 75.5 133.3 

Maximum 1420 3336 

Q3-Q1 70.6 122.3 
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Supplementary Table S7. Number of reads per distinct deletion observed by deep sequencing in wtPTE deletion libraries generated via TRIAD. 

The histograms relative to these distributions are plotted in Supplementary Figure S7. 

 

 
Number of distinct deletions 

  - 3 bp -6 bp -9 bp All deletions 

Total number of deletions 633 682 608 1923 
         

Number of reads per deletion 
        

1-4 reads 83 107 96 286 

5-9 reads 52 67 70 189 

10-39 reads 168 310 
(49%) 

212 369 
(54.1%) 

217 324 
(53.3%) 

597 1003 
(52,2%) 40-99 reads 142 157 107 406 

100-199 reads 86 82 64 232 

200-999 reads 93 102 
(16.1%) 

57 57 
(8.4%) 

53 64 
(8.9%) 

203 213 
(11.1%) ≥1000 reads 9 0 1 10 

                  

 

 



 

 

Supplementary Table S8. Fitness effects in TRIAD (insertion and deletion) and trinucleotide substitution libraries of wtPTE. 

 

  
Deletions Insertions Substitutions 

  
-3 bp -6 bp -9 bp All deletions +3 bp +6 bp +9 bp All insertions TriNEx 

 
Number of variants[a] 175 154 156 485 92 134 125 351 342 

P
A

R
A

O
X

O
N

A
S

E
 

Fitness effect[b]: 
         

Strongly deleterious 117 (66.9%) 143 (92.8%) 143 (91.7%) 403 (83.1%) 58 (63.2%) 106 (79.1%) 105 (84.0%) 269 (76.7%) 81 (23.8%) 

Mildly deleterious 41 (23.4%) 9 (5.9%) 11 (7.1%) 61 (12.6%) 14 (15.2%) 20 (14.9%) 13 (10.4%) 47 (13.4%) 100 (29.2%) 

Neutral 14 (8.0%) 2 (1.3%) 2 (1.3%) 18 (3.7%) 18 (19.5%) 7 (5.2%) 1 (0.8%) 26 (7.4%) 161 (47.0%) 

Beneficial 3 (1.7%) 0 (0.0%) 0 (0.0%) 3 (0.6%) 2 (2.2%) 1 (0.7%) 6 (4.8%) 9 (2.6%) 0 (0.0%) 

          

Average fitness change][d] 0.048 0.014 0.015 0.022 0.054 0.024 0.019 0.027 0.28 

 
[0.038 ; 0.062] [0.012 ; 0.016] [0.013 ; 0.017] [0.02 ; 0.025] [0.036 ; 0.082] [0.018 ; 0.031] [0.015 ; 0.025] [0.023 ; 0.033] [0.24 ; 0.33] 

Median fitness change[c] 0.03 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.63 

Minimum fitness change[c] <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Maximum fitness change[c] 1.59 0.94 1.31 1.59 1.79 1.60 2.78 2.78 1.50 

          

A
R

IY
L

E
S

T
E

R
A

S
E

 (
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y
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b

u
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te

) Fitness effect[b]: 
         

Strongly deleterious 100 (57.2%) 137 (88.9%) 133 (85.2%) 370 (76.3%) 53 (57.7%) 99 (73.9%) 68 (54.3%) 220 (62.7%) 65 (19.1%) 

Mildly deleterious 40 (22.8%) 10 (6.5%) 9 (5.8%) 59 (12.2%) 16 (17.3%) 18 (13.4%) 42 (33.6%) 76 (21.6%) 96 (28.0%) 

Neutral 14 (8.0%) 6 (3.9%) 7 (4.5%) 27 (5.6%) 15 (16.3%) 8 (6.0%) 5 (4.0%) 28 (8.0%) 175 (51.1%) 

Beneficial 21 (12.0%) 1 (0.7%) 7 (4.5%) 29 (6.0%) 8 (8.7%) 9 (6.7%) 10 (8.0%) 27 (7.7%) 6 (1.8%) 

          

Average fitness change[c][d] 0.07 0.017 0.02 0.03 0.085 0.031 0.098 0.061 0.34 

 
[0.051 ; 0.095] [0.014 ; 0.02] [0.015 ; 0.026] [0.025 ; 0.035] [0.056 ; 0.13] [0.023 ; 0.043] [0.075 ; 0.13] [0.05; 0.074] [0.3 ; 0.4] 

Median fitness change[c] 0.03 <0.01 <0.01 <0.01 0.05 <0.01 0.09 0.04 0.70 

Minimum fitness change[c] <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Maximum fitness change[c] 2.46 1.52 5.02 5.02 4.12 3.13 5.36 5.36 2.98 

          

 

[a] The number of variants sampled in each library was corrected to only take in-frame mutations into account. Overall, 178 variants from each TRIAD library (6 × 178 in total) and 435 trinucleotide 

substitution variants were randomly picked, expressed in E. coli and screened for hydrolysis of paraoxon and 4-nitrophenyl butyrate (see Table S9). The estimated number of frame-shifted variants 

(based on the frequencies in Table S1) was then subtracted from the numbers of highly deleterious variants (<0.01 in both activities). 
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[b] Mutations are classified as strongly deleterious (>10-fold activity decrease relative to wtPTE), mildly deleterious (10-fold—1.5-fold decrease), neutral (<1.5-fold change), and beneficial (>1.5-fold 

increase). 

[c] Changes in phosphotriesterase (native substrate: paraoxon) and esterase (promiscuous substrate: pNPB) activities are determined relative to those of wtPTE by comparing the initial rates in cell 

lysates measured under identical conditions with 200 µM of the respective substrates, resulting in a dimensionless ratio (see Methods).  

[d] The average fitness change refers to the change in initial rates as a consequence of mutation and is calculated as the geometric mean of the relative activities of the variants for each class of 

mutations (see Supplementary Table S9). The corresponding confidence intervals (5% risk of error) are indicated between brackets. 



 

 

Supplementary Table S9. Functional analysis of TRIAD and trinucleotide substitution 

libraries of wtPTE against paraoxon and 4-NPB 

Changes in paraoxonase (native substrate: paraoxon) and arylesterase (promiscuous substrate: 4-

nitrophenylbutyrate, 4-NPB) activities are determined relative to those of wtPTE by comparing the 

initial rates in cell lysates measured under identical conditions with 200 µM of the respective 

substrates (see Methods). Data are averages of triplicate values from three independent experiments 

and error values represent +/- 1 SEM. 

 
Due to its size, the table is located in the Source Data file.



 

 

Supplementary Table S10. Analysis of solvent-accessible surface area of mutated residues 

in wtPTE variants retaining ≥50% of the parental paraoxonase activity. 

The solvent accessible surface area (SASA) of residues mutated (either InDel or substitution) in 

wtPTE variants retaining ≥50% of the parental paraoxonase activity was calculated from the structure 

of wtPTE (PDB code: 4PCP) using the PISA web server at the European Bioinformatics Institute 

(http://www.ebi.ac.uk/pdbe/prot_int/pistart.html) 17. Relative accessible surface area (RSA) was 

defined as the ratio of the SASA for a given residue within the structured protein vs. in the free 

residue 18. Residues were classified as core for RSA < 0.25, and surface for RSA ≥ 0.25 19. 

 

Supplementary Table S10a. List of residues in wtPTE InDel variants retaining ≥50% of the 

parental paraoxonase activity. 

 

Residue no. SASA (Å2) RSA Location Corresponding variants 

34 79.4 0.93 surface F34aN34b 

35 88.8 0.59 surface ∆D35R36, P35a, F35a, K35aC35b, F35aH35b, 

S35aC35bP35c 

36 124.2 0.52 surface ∆R36, E36aY36bK36c 

37 4.5 0.02 core T37aI37b 

42 24.2 0.28 surface H42a 

43 77.6 0.54 surface P43H/A43a 

45 48.6 0.33 surface C45aP45b 

49 1.6 0.01 core ∆A49 

75 42.7 0.35 surface ∆S75R76K77 

155 96.2 0.51 surface ∆Q155 

161 48.7 0.33 surface T161K/P161a 

173 66.1 0.45 surface ∆T173 

174 8.0 0.09 core ∆G174 

203 34.7 0.31 surface ∆A203 

205 85.0 0.70 surface L205aG205b 

206 102.0 0.54 surface Q206H/∆R207G208 

259 10.4 0.09 core P259a 

261 56.0 0.66 surface S261a, P261a, G261aR261b, D261aT261bS261c 

262 41.6 0.23 core ∆L262, I262a, P262aT262bT262c 

263 126.4 0.69 surface ∆E263, E263V/Q263a 

266 97.8 0.87 surface ∆A266, G266aR266b 

267 31.8 0.26 surface A266G/∆S267 

269 50.3 0.41 surface ∆S269 

292 56.5 0.25 core ∆Y292 

293 45.9 0.22 core ∆M293, M293I/∆K294 

http://www.ebi.ac.uk/pdbe/prot_int/pistart.html
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Residue no. SASA (Å2) RSA Location Corresponding variants 

319 84.7 0.69 surface S319a 

337 109.0 0.45 surface ∆R337 

338 126.9 0.69 surface ∆E338 

339 91.4 0.43 surface Q339a, K339M/Q339a, V339a 

362 122.6 0.68 surface ∆L362, K362a 

363 178.5 0.74 surface K363aR363bR363c 

 

Supplementary Table S10b. List of residues in wtPTE substitution variants retaining ≥50% of 

the parental paraoxonase activity. 

 

Residue no. SASA (Å2) RSA Location Corresponding variants 

36 124.2 0.52 surface R36N 

44 18.0 0.10 core I44K/T45A, I44T/T45A 

45 48.6 0.33 surface I44K/T45A, I44T/T45A 

47 98.0 0.80 surface S47Y, S47C/E48Q 

48 96.6 0.53 surface S47C/E48Q 

49 1.6 0.01 core A49M 

54 9.0 0.06 core T54S 

63 41.2 0.36 surface A63T, A63S 

67 183.9 0.76 surface R67G, R67T, R67H 

73 29.3 0.13 core F73C 

75 42.7 0.35 surface S75G 

80 8.1 0.07 core A80G, A80G/E81K 

81 75.9 0.41 surface A80G/E81K 

89 124.0 0.51 surface R89F 

92 94.9 0.84 surface A92G/A93T 

93 27.5 0.24 core A93V 

96 85.8 0.36 surface R96T 

100 0.9 0.01 core D100A 

102 1.3 0.01 core S102G, S102T 

109 20.8 0.14 core D109C, D109S 

117 0.1 0.00 core T117N/P118A 

118 148.9 0.62 surface R118K, R118G, R118Q, T117N/P118A 

143 19.7 0.12 core V143A, V143A/E144K 

144 109.2 0.60 surface E144Q, E144I 

147 13.6 0.09 core T147S 

151 22.0 0.12 core L151R 

155 96.2 0.51 surface Q155L 
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Residue no. SASA (Å2) RSA Location Corresponding variants 

162 53.2 0.63 surface G162R, G162V 

198 0.0 0.00 core V198L 

206 102.0 0.54 surface Q206L, Q206H 

208 1.1 0.01 core G208A 

223 27.3 0.19 core P223A 

235 85.3 0.57 surface D235T 

238 84.0 0.69 surface S238G 

241 25.4 0.17 core T241I 

242 53.0 0.47 surface A242P 

262 41.6 0.23 core L262H, L262M, L262I 

263 126.4 0.69 surface E263Q 

266 97.8 0.87 surface A266D, A266G 

269 50.3 0.41 surface S269H, S269A 

282 77.9 0.43 surface L282S 

292 56.5 0.25 core Y292G, Y292R, Y292F, Y292L 

293 45.9 0.22 core M293T 

302 3.1 0.01 core W302F 

308 38.6 0.32 surface S308C 

311 94.8 0.65 surface T311A 

312 97.9 0.62 surface N312D 

323 26.4 0.18 core D323E/G324R 

324 10.1 0.12 core D323E/G324R 

330 75.1 0.42 surface L330S, L330I, L330A 

331 116.1 0.48 surface R331G 

334 56.3 0.39 surface P334N, P334T, P334A 

337 109.0 0.45 surface R337Y 

339 91.4 0.43 surface K339T, K339R 

342 75.3 0.53 surface P342L/Q343E, P342L, P342W, P342R 

343 98.0 0.52 surface Q343L, Q343G, P342L/Q343E, Q343A, Q343I, Q343W, 

Q343P, Q343E 

348 7.9 0.09 core G348A 

351 57.4 0.36 surface V351D 

356 102.8 0.43 surface R356E 

363 178.5 0.74 surface R363G 

 



 

 

Supplementary Table S11. Activity and solubility of InDel (-3 and +3 bp) and substitutions 

(TriNucleotide Exchange; TriNEx) variants of wtPTE phosphotriesterase. 

Upon transformation of the DNA libraries (-3 and +3 bp TRIAD libraries and TriNEx library) into E. coli 

BL21(DE3), a total of 192 colonies (64 for each library) were selected randomly, and their 

corresponding PTE variants sequenced to discard the ones with frameshifting mutations. Variants 

with non-frameshifting mutations were then screened for phosphotriesterase (PTE) activity and 

soluble expression (in the absence of GroEL/ES). Changes in PTE activity are determined relative to 

those of wtPTE by comparing the initial rates in cell lysates measured under identical conditions with 

200 µM of the native paraoxon substrate (see Methods). Data are averages of triplicate values from 

three independent experiments and error values represent +/- 1 SEM. Relative soluble expression 

levels are determined as the ratio in protein expression levels in the clear lysate (supernatant) 

between variants and the parent enzyme wtPTE measured by SDS-PAGE (See Methods). The data 

are also plotted in Supplementary Figure S11. 

Variant 
Relative PTE 

activity 
Relative soluble 
expression level 

Distance to active 
site metal (Å)[a] RSA[b] Location[b] 

(surface/core) 

-3 bp (TRIAD)       

ΔG261 0.11 ± 0.05 1.04 22.4 0.58 surface 

ΔS62 <0.001 1.12 13.2 0.23 core 

ΔL271 0.058 ± 0.006 1.44 11.5 0.28 surface 

ΔA114 <0.001 0.30 18.8 0.11 core 

ΔE144 <0.001 0.26 25.7 0.51 surface 

ΔP334 <0.001 0.31 23.6 0.37 surface 

ΔQ343 0.015 ± 0.006 0.30 27.2 0.46 surface 

ΔA286 0.021 ± 0.01 0.38 23.2 0.22 core 

ΔQ343 0.015 ± 0.011 0.32 27.2 0.46 surface 

ΔR225 0.0041 ± 0.0004 0.65 18.3 0.05 core 

ΔE181 <0.001 0.21 19.4 0.27 surface 

ΔV143 0.0061 ± 0.0015 0.21 23.4 0.12 core 

S258R/ΔA259 0.094 ± 0.059 1.20 14.8 0.06 core 

H257R/ΔS258 <0.001 0.98 11.1 0.04 core 

ΔA114 <0.001 0.10 18.8 0.11 core 

ΔD235 0.17 ± 0.07 0.84 19.7 0.46 surface 

ΔL346 0.0013 ± 0.0009 0.19 22.4 0.03 core 

ΔL330 0.4 ± 0.17 0.90 20.0 0.39 surface 

L136P/ΔS137 <0.001 0.76 22.0 0.56 surface 

ΔT52 <0.001 0.33 15.1 0.01 core 

ΔQ211 0.12 ± 0.04 0.36 19.6 0.27 surface 

ΔL262 0.23 ± 0.08 1.13 20.9 0.22 core 

A90V/ΔR91 <0.001 0.35 17.2 0.00 core 

ΔH55 <0.001 0.87 6.1 0.03 core 

ΔE115 <0.001 0.14 20.5 0.43 surface 

F73C/ΔG74 0.034 ± 0.014 0.96 18.6 0.13 core 

ΔV40 <0.001 0.23 18.2 0.02 core 

ΔA355 0.0013 ± 0.001 0.32 19.5 0.15 core 

ΔS102 <0.001 0.27 7.0 0.01 core 
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Variant 
Relative PTE 

activity 
Relative soluble 
expression level 

Distance to active 
site metal (Å)[a] RSA[b] Location[b] 

(surface/core) 

D133E/ΔP134 <0.001 0.68 13.0 0.41 surface 

+3 bp (TRIAD) 
   

L251a <0.001 0.94 10.9 0.03 core 

I69a <0.001 0.44 21.7 0.51 surface 

P114a <0.001 0.25 18.8 0.11 core 

E144V/K144a <0.001 0.29 25.7 0.51 surface 

M69a <0.001 0.38 21.7 0.51 surface 

W276a 0.011 ± 0.005 1.09 19.2 0.20 core 

F291a 0.049 ± 0.021 1.14 26.9 0.64 surface 

L252a 0.0035 ± 0.0028 0.19 11.5 0.00 core 

F322a 0.015 ± 0.005 0.85 17.8 0.67 surface 

T279a 0.0097 ± 0.0051 0.87 20.0 0.30 surface 

T350R/A350a <0.001 0.14 17.8 0.08 core 

V255a 0.012 ± 0.004 1.14 12.1 0.00 core 

S240a 0.039 ± 0.014 0.91 19.1 0.00 core 

S291a 0.21 ± 0.05 0.74 26.9 0.64 surface 

P256L/T256a 0.037 ± 0.015 1.27 12.4 0.03 core 

G69a 0.032 ± 0.014 1.08 21.7 0.51 surface 

V114a <0.001 0.20 18.8 0.11 core 

I284N/F284a 0.013 ± 0.003 0.74 18.7 0.00 core 

S260-Stop <0.001 0.17 19.9 0.51 surface 

R261a 0.4 ± 0.17 0.33 22.4 0.58 surface 

F188a <0.001 0.91 19.6 0.00 core 

L261a 0.5 ± 0.15 1.00 22.4 0.58 surface 

L251a <0.001 0.84 10.9 0.03 core 

V353a <0.001 0.20 19.0 0.00 core 

D271a 0.085 ± 0.052 1.07 11.5 0.28 surface 

C270a 0.13 ± 0.09 0.29 14.8 0.79 surface 

A63V/S63a <0.001 0.65 15.5 0.34 surface 

Substitutions (TriNEx) 
   

L262P 0.1 ± 0.04 0.83 20.9 0.22 core 

R118Q 0.62 ± 0.25 0.71 22.1 0.56 surface 

I250K 0.0017 ± 0.0007 0.25 14.4 0.00 core 

Y292D 0.7 ± 0.11 0.74 23.4 0.22 core 

I349K/T350S <0.001 0.22 19.2 0.02 core 

E115Q 0.63 ± 0.05 0.75 20.5 0.43 surface 

Y292S 0.63 ± 0.16 0.72 23.4 0.22 core 

H55A 0.32 ± 0.17 0.97 6.1 0.03 core 

E144G 0.44 ± 0.17 0.72 25.7 0.51 surface 

H55R <0.001 0.89 6.1 0.03 core 

S276C 0.55 ± 0.29 0.99 19.2 0.20 core 

G348F 0.37 ± 0.1 0.67 22.6 0.08 core 

R280K 0.46 ± 0.07 0.97 16.6 0.04 core 

G162A 0.21 ± 0.05 0.56 23.9 0.55 surface 

A165V/G166R 0.003 ± 0.0008 0.23 16.1 0.00 core 

G42V 0.075 ± 0.008 0.37 22.9 0.25 core 
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Variant 
Relative PTE 

activity 
Relative soluble 
expression level 

Distance to active 
site metal (Å)[a] RSA[b] Location[b] 

(surface/core) 

A80L 1.2 ± 0.26 1.03 18.6 0.07 core 

S62V 0.27 ± 0.06 1.08 13.2 0.23 core 

G209N 0.13 ± 0.01 0.71 15.7 0.00 core 

P70H/E71K <0.001 0.40 20.9 0.24 core 

G209L 0.067 ± 0.019 0.67 15.7 0.00 core 

R89L 0.69 ± 0.19 1.04 19.7 0.47 surface 

L262R 0.77 ± 0.1 0.94 20.9 0.22 core 

V143E/E144Q 0.19 ± 0.09 0.58 23.4 0.12 core 

P197R/V198L 0.0033 ± 0.0007 0.30 15.9 0.00 core 

M314K/D315H 0.0045 ± 0.002 1.06 14.1 0.11 core 

E159D 0.75 ± 0.06 1.20 21.5 0.42 surface 

R36A 0.52 ± 0.04 0.97 24.1 0.47 surface 

L262G 0.21 ± 0.03 1.11 20.9 0.22 core 

S299R <0.001 0.96 9.6 0.00 core 

 

[a] Pairwise distances between the active site metals and all the mutated residues (alpha carbons) were calculated from the 

structure of wtPTE (PDB 4PCP) using a python script in PyMol (https://pymolwiki.org/index.php/Pairwise_distances). 

[b] RSA: Relative solvent accessibility (see Supplementary Table S10). Residues were classified as core for RSA < 0.25, and 

surface for RSA ≥ 0.25. 

 

https://pymolwiki.org/index.php/Pairwise_distances


 

 

Supplementary Table S12. Effects of InDels (-3 and +3 bp) and substitutions (TriNucleotide 

Exchange; TriNEx) on activity and soluble expression of wtPTE phosphotriesterase. 

 

  Deletions (-3 bp) Insertions (+3 bp) 
Substitutions 

(TriNEx) 

Number of variants screened [a] 30 27 30 

Fitness (activity) effects [b] 
   

Beneficial 0 0 0 

Neutral 0 0 5 

Mildly deleterious 5 4 15 

Deleterious 25 23 10 

Average fitness change [c] 0.005 0.008 0.08 

Minimum fitness change [b] [c] < 0.001 < 0.001 < 0.001 

Maximum fitness change [b] [c] 0.4 0.5 1.2 

Effects on soluble expression [d]       

Neutral 11 13 14 

Mildly destabilizing 2 3 10 

Strongly destabilizing 17 11 6 

Average solubility change [e] 0.45 0.54 0.68 

Solubility-neutral mutations 
(Variants with ≤ 25% decrease in soluble expression) 

Number of variants 11 13 14 

Average distance of mutation to active site 
metal (Å) [f] 

16.4 ± 5.1 17.3 ± 5 16.5 ± 5.6 

Median distance to active site metal 18.6 19.1 18.9 

Minimum distance to active site metal 6.1 10.9 6.1 

Maximum distance to active site metal 22.4 26.9 24.1 

Core residues 6 7 11 

Surface residues 5 6 3 

Solubility-neutral and functionally deleterious mutations 
(Variants with ≤ 25% decrease in soluble expression and ≥ 10-fold decrease in PTE activity) 

Number of variants 7 12 3 

Average distance of mutation to active site 
metal (Å) [f] 

13.9 ± 4.8 16.8 ± 5 9.9 ± 3.3 

T-test (p-value) [f] 0.17 0.42 0.04 

Median distance to active site metal  13.9 18.4 9.6 

Minimum distance to active site metal  6.1 10.9 6.1 

Maximum distance to active site metal  22.0 26.9 14.1 

Core residues 5 7 3 

Surface residues 2 5 0 

 

[a] See Supplementary Table S11 for screening conditions and results. 

[b] Mutational effects on enzyme fitness relate to changes in phosphotriesterase (native substrate: paraoxon) activities, which 

are determined relative to those of wtPTE by comparing the initial rates in cell lysates measured under identical conditions with 

200 µM of the respective substrates, resulting in a dimensionless ratio (see Methods). Mutations are classified as strongly 

deleterious (>10-fold activity decrease, relative to wtPTE), mildly deleterious (10-fold to 1.5-fold decrease), neutral (<1.5-fold 

change), and beneficial (>1.5-fold increase). 

[c] The average fitness change refers to the change in initial rates as a consequence of mutation and is calculated as the 

geometric mean of the relative activities of the variants for each type of mutation (see Supplementary Table S11). 
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[d] Mutational effects on kinetic stability were inferred by the levels of soluble expression for each variant relative to that of the 

parent enzyme wtPTE. Mutations are classified as strongly destabilizing (more than 50% decrease in soluble expression, 

relative to wtPTE), mildly destabilizing (50% to 25% decrease in soluble expression), and neutral (less than 25% decrease in 

soluble expression). 

[e] The average solubility change is calculated as the geometric mean of the relative solubility changes of the variants for each 

type of mutation (see Supplementary Table S11). 

[f] For these variants (see Supplementary Table S11), the average distance of mutations to the active site metals is given as 

mean ± standard deviation. A T-test was performed to evaluate if the distribution of these distances are significantly different 

between solubility-neutral mutations (variants with ≤ 25% decrease in soluble expression) and solubility-neutral but functionally-

deleterious mutations (variants with ≤ 25% decrease in soluble expression and ≥ 10-fold decrease in PTE activity). 

 

 

 

 



 

 

Supplementary Table S13. Cell lysate activity levels of InDel variants of wtPTE improved in arylesterase activity.  

Changes in phosphotriesterase (PTE; native substrate: paraoxon) and arylesterase (AE; promiscuous substrates: 4-NPB or 2-NH) activities are determined 

relative to those of wtPTE by comparing the initial rates in cell lysates measured under identical conditions with 200 µM of the respective substrates (see 

Methods). Activities were recorded after expression of wtPTE variants in the presence (+GroEL/ES) or absence (-GroEL/ES) of chaperone over-expression. 

Data are averages of triplicate values from three biological replicates and error values represent +/- 1 SEM. Part of this data is shown on Figures 6A and 6B 

which consist of AE vs. PTE activity plots in the presence of GroEL/ES chaperone.  

Supplementary Table S13A: Promiscuous activity against 4-NPB. 

    Activity relative to wtPTE   

   AE (4-NPB) PTE (Paraoxon) Relative chaperone 
dependency [c] Library Protein mutation [a] + GroEL/ES - GroEL/ES + GroEL/ES - GroEL/ES 

-3 bp ΔQ206 2.3 ± 0.3 2.1 ± 0.1 0.68 ± 0.15 0.58 ± 0.04 1.1 

 
∆D232 2.2 ± 0.1 2.3 ± 0.1 0.06 ± 0.01 0.05 ± 0.01 0.9 

 
∆T234 2.3 ± 0.2 1.9 ± 0.2 0.41 ± 0.03 0.33 ± 0.05 1.2 

 
ΔH254 2.4 ± 0.2 2.3 ± 0.1 < 0.01 <0.01 1.0 

 
∆S269 2.0 ± 0.1 2.0 ± 0.1 0.86 ± 0.04 0.97 ± 0.06 1.0 

  L272R/∆G273 2.2 ± 0.2 2.5 ± 0.2 0.22 ± 0.08 0.27 ± 0.12 0.9 

-6 bp ΔH257S258 5.2 ± 0.8 4.4 ± 0.3 0.06 ± 0.01 0.05 ± 0.01 1.2 

 
∆S258A259 2.2 ± 0.3 1.5 ± 0.1 0.07 ± 0.02 0.06 ± 0.01 1.4 

 
∆L262E263/D264H 2.1 ± 0.7 1.3 ± 0.7 0.10 ± 0.04 0.08 ± 0.02 1.7 

 
∆S267A268 or ∆S269A270 2.3 ± 0.1 1.0 ± 0.2 0.25 ± 0.03 0.16 ± 0.03 2.4 

 
ΔA270L271 2.2 ± 0.2 1.6 ± 0.2 0.18 ± 0.02 0.16 ± 0.07 1.4 

 
ΔL271L272 3.0 ± 0.3 2.3 ± 0.2 0.16 ± 0.03 0.13 ± 0.02 1.3 

  ΔG273I274 3.2 ± 0.3 2.3 ± 0.2 0.12 ± 0.02 0.08 ± 0.01 1.4 

-9 bp ∆G261L262E263 [b] 4.6 ± 0.6 4.0 ± 0.2 0.10 ± 0.05 0.13 ± 0.02 1.1 

 
∆A268S269A270 2.6 ± 0.1 2.6 ± 0.1 0.09 ± 0.01 0.09 ± 0.01 1.0 

  ∆L272G273I274 2.4 ± 0.2 2.7 ± 0.2 0.24 ± 0.02 0.28 ± 0.03 0.9 



(Table S13 continued) 

 SI-73  

+3 bp Y255a 2.3 ± 0.4 2.3 ± 0.3 < 0.01 <0.01 1.0 

 
L256a 14.4 ± 1.3 16.6 ± 1.2 < 0.01 <0.01 0.9 

 
H257a 2.9 ± 0.3 3.7 ± 0.1 0.17 ± 0.02 0.13 ± 0.01 0.8 

 
D258a/A259T 3.6 ± 0.7 4.4 ± 0.2 0.34 ± 0.06 0.29 ± 0.03 0.8 

 
V258a/A259P 3.7 ± 0.1 3.1 ± 0.5 0.79 ± 0.26 0.70 ± 0.04 1.2 

 
I258a 2.8 ± 0.8 2.3 ± 0.3 0.49 ± 0.13 0.41 ± 0.06 1.2 

 
P259a 3.4 ± 0.2 3.9 ± 0.3 0.95 ± 0.06 1.12 ± 0.09 0.9 

 
A259G/S259a 4.1 ± 0.2 3.8 ± 0.2 0.37 ± 0.03 0.30 ± 0.04 1.1 

 
S261a 2.1 ± 0.2 1.8 ± 0.2 0.78 ± 0.01 0.76 ± 0.02 1.2 

 
P261a 2.7 ± 0.1 2.7 ± 0.1 0.95 ± 0.01 0.94 ± 0.01 1.0 

 
W261a 3.1 ± 0.4 1.0 ± 0.2 0.11 ± 0.02 0.05 ± 0.01 3.1 

  S319a 2.5 ± 0.1 2.6 ± 0.1 1.24 ± 0.03 1.30 ± 0.04 1.0 

+6 bp G255aA255b 9.4 ± 0.9 8.1 ± 0.5 0.05 ± 0.01 0.03 ± 0.01 1.2 

 
D258aR258b/A259S 4.0 ± 0.1 3.2 ± 0.2 0.21 ± 0.01 0.16 ± 0.02 1.2 

 
P261aC261b 2.6 ± 0.1 2.6 ± 0.1 0.21 ± 0.01 0.22 ± 0.01 1.0 

 
I261aG261b 3.3 ± 0.1 1.9 ± 0.1 1.39 ± 0.11 0.64 ± 0.04 1.7 

 
E261aS261b 4.0 ± 0.2 2.8 ± 0.2 0.70 ± 0.05 0.41 ± 0.03 1.4 

 
V262aL262b 4.8 ± 0.2 1.9 ± 0.1 1.25 ± 0.03 0.48 ± 0.02 2.5 

 
W262aK262b 4.3 ± 0.1 2.9 ± 0.2 0.46 ± 0.04 0.26 ± 0.04 1.5 

 
L265aP265b 2.8 ± 0.2 1.9 ± 0.1 1.03 ± 0.06 0.62 ± 0.05 1.4 

 
G265aY265b/A266S 2.9 ± 0.1 2.1 ± 0.2 1.24 ± 0.07 0.70 ± 0.05 1.4 

 
G266aR266b 2.6 ± 0.1 2.4 ± 0.1 0.79 ± 0.10 0.50 ± 0.15 1.1 

 
Y268aR268b 2.9 ± 0.2 2.5 ± 0.3 0.16 ± 0.01 0.14 ± 0.01 1.2 

 
Q271aR271b 3.0 ± 0.2 3.4 ± 0.2 0.13 ± 0.02 0.16 ± 0.02 0.9 

 
R271aC271b 2.8 ± 0.1 1.9 ± 0.4 0.12 ± 0.01 0.05 ± 0.01 1.4 

  Y275aG275b 3.1 ± 0.2 2.7 ± 0.3 0.09 ± 0.01 0.07 ± 0.01 1.2 

+9 bp T121aS121bD121c 2.8 ± 0.7 1.2 ± 0.1 0.21 ± 0.06 0.06 ± 0.01 2.3 
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K257aH257bG257c 4.5 ± 0.3 5.3 ± 0.4 0.17 ± 0.02 0.21 ± 0.03 0.9 

 
S258aG258bF258c 2.3 ± 0.3 2.0 ± 0.2 0.25 ± 0.02 0.18 ± 0.02 1.2 

 
C261aK261bL261c 5.4 ± 0.3 6.2 ± 0.5 0.22 ± 0.01 0.23 ± 0.01 0.9 

 
D261aT261bS261c 3.3 ± 0.1 3.7 ± 1.1 1.18 ± 0.10 1.48 ± 0.15 0.9 

 
D261aW261bK261c 2.9 ± 0.1 2.7 ± 0.3 0.43 ± 0.01 0.44 ± 0.01 1.1 

 
H261aI261bL261c 4.9 ± 0.2 2.3 ± 0.7 0.22 ± 0.01 0.08 ± 0.01 2.1 

 
V261aN261bG261c 2.6 ± 0.1 1.2 ± 0.1 0.18 ± 0.01 0.09 ± 0.01 2.1 

 
G262aL262bE262c/E263K 2.3 ± 0.4 2.5 ± 0.2 1.00 ± 0.15 0.95 ± 0.13 0.9 

 
L268aG268bC268c/S269P 2.1 ± 0.1 1.4 ± 0.1 0.13 ± 0.01 0.05 ± 0.01 1.6 

 
S269aG269bS269c 3.0 ± 0.1 2.8 ± 0.1 0.41 ± 0.05 0.38 ± 0.02 1.1 

 
T269aS269bG269c 2.5 ± 0.2 2.0 ± 0.4 0.35 ± 0.04 0.25 ± 0.05 1.3 

 
E276aG276bM276c 2.7 ± 0.3 2.5 ± 0.1 0.12 ± 0.02 0.10 ± 0.02 1.0 

  A309aA309bA309c 2.1 ± 0.1 1.8 ± 0.2 0.28 ± 0.02 0.24 ± 0.02 1.1 

 

Supplementary Table S13B: Promiscuous activity against 2-NH. 

    Activity relative to wtPTE   

   AE (2-NH) PTE (Paraoxon) Relative chaperone 
dependency[c] Library Protein mutation [a] + GroEL/ES - GroEL/ES + GroEL/ES - GroEL/ES 

-3 bp ∆G273 3.1 ± 0.3 2.2 ± 0.3 0.20 ± 0.01 0.15 ± 0.02 1.4 

 
∆L303 3.3 ± 0.5 5.6 ± 0.2 < 0.01 < 0.01 0.6 

 
∆S308 8.7 ± 1.2 2.8 ± 0.1 0.41 ± 0.04 0.15 ± 0.01 3.1 

 
∆T311 6.3 ± 0.6 3.2 ± 0.3 0.48 ± 0.04 0.31 ± 0.02 1.9 

 
∆V316 4.1 ± 0.6 3.9 ± 0.2 0.04 ± 0.01 < 0.01 1.1 

  ∆M317 9.5 ± 0.7 5.3 ± 0.6 < 0.01 < 0.01 1.8 

-6 bp ∆I260G261 2.6 ± 0.1 1.7 ± 0.1 0.02 ± 0.01 < 0.01 1.5 
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I313N/∆M314D315 5.2 ± 0.2 4.4 ± 0.2 < 0.01 < 0.01 1.2 

-9 bp ∆P256H257S258 8.7 ± 0.5 4.9 ± 0.3 < 0.01 < 0.01 1.8 

 
∆G261L262E263 [b] 3.6 ± 0.3 1.6 ± 0.1 0.29 ± 0.01 0.23 ± 0.01 2.3 

  ∆A270L271L272G273 10.5 ± 2.0 2.6 ± 0.2 0.58 ± 0.08 0.22 ± 0.03 4.1 

+3 bp A310a 8.1 ± 0.2 5.1 ± 0.3 0.93 ± 0.06 0.79 ± 0.05 1.6 

 
G311a 15.7 ± 3.2 14.4 ± 3.6 0.28 ± 0.04 0.36 ± 0.10 1.1 

 
P311a 5.7 ± 0.3 4.6 ± 0.1 0.24 ± 0.02 0.21 ± 0.02 1.2 

 
I313R/F313a 14.3 ± 0.5 9.7 ± 0.6 0.11 ± 0.03 0.03 ± 0.01 1.5 

 
I313M/F313a 5.0 ± 0.3 3.7 ± 0.3 < 0.01 < 0.01 1.4 

+6 bp V99G/Q99aI99b 6.5 ± 0.6 5.0 ± 0.4 0.46 ± 0.04 0.30 ± 0.03 1.3 

 
P256R/G256aA256b 138.6 ± 11.4 102.9 ± 4.7 < 0.01 < 0.01 1.3 

 
S256aG256b 28.0 ± 1.3 29.6 ± 2.3 < 0.01 < 0.01 0.9 

 
V256aW256b 9.0 ± 1.8 8.8 ± 1.1 0.07 ± 0.02 0.03 ± 0.01 1.0 

 
H257Q/T257aY257b 4.9 ± 1.0 2.1 ± 0.2 1.52 ± 0.18 0.85 ± 0.08 2.4 

 
I313K/V313aV313b 10.6 ± 1.4 12.9 ± 2.1 0.04 ± 0.01 0.12 ± 0.08 0.8 

 
I313S/S313aL313b 10.0 ± 1.1 7.4 ± 0.6 0.02 ± 0.01 0.02 ± 0.01 1.3 

+9 bp V310A/S310aD310bI310c 5.2 ± 0.6 8.1 ± 0.4 0.31 ± 0.03 0.37 ± 0.02 0.6 

 
T311K/P311aE311bA311c 3.9 ± 0.1 0.6 ± 0.1 < 0.01 < 0.01 6.6 

  T311S/M311aV311bS311c 3.0 ± 0.2 1.9 ± 0.3 0.36 ± 0.03 0.16 ± 0.05 1.6 

 

[a] The symbol ∆ before a residue (or a group of residues) signifies that this (or these) residue(s) have been deleted. Inserted residues are labelled using the 

number of the position after which they are inserted and alphabetical order (e.g., glutamine and tyrosine residues inserted in this order after the residues at 

position 230 would be labelled Q230aY230b). 

[b] This variant (∆G261L262E263) was found in both screening campaign against 4-NPB and 2-NH. 

[c] Relative chaperone dependency refers to the ratio of relative AE activities in the presence vs. absence of chaperone over-expression. 



 

 

Supplementary Table S14. Change in soluble expression of PTE InDel variants improved in 

arylesterase activity in the presence or absence of chaperone co-expression. 

The soluble expression of each PTE variant was analyzed by SDS-PAGE (shown in Supplementary 

Figure S14). PTE appears as a minor and major band in the insoluble fraction, and the major band 

only in the soluble fraction. The intensity of both bands combined was quantified using ImageJ and 

normalized to background intensity. The percentage of soluble expression is given by: soluble band 

intensity / (soluble band intensity + pellet band intensity). 

Soluble expression Without GroEL/ES With GroEL/ES 

wtPTE 63% 77% 

∆A270L271L272G273 90% 81% 

P256R/G256aA256b 56% 59% 

S256aG256b 59% 70% 

G311a 64% 83% 

 

 



 

 

Supplementary Table S15. Sequence analysis of naïve TRIAD libraries focused on Loop 7 of 

wtPTE. 

Sequences were determined from randomly chosen variants upon generation of the libraries. 

Residues are numbered according to the crystal structure of wtPTE (PDB: 4PCP). Occurrence refers 

to the number of times that a specific mutation was observed among the sequenced variants. 

Library 
 

Variant 
number 

DNA mutation 
Length 
change (bp) 

Protein mutation Occurrence 

-3 bp 1 GGT(CTAG)AAG -4 bp frameshift n.a. 

 
2 C(TGG)GT -3 bp L272R/∆G273 8 

 
3 AG(TGCG)A -4 bp frameshift n.a. 

 
4 TC(AGC)C -3 bp ∆A270 7 

 
5 CT(GGGT)A -4 bp frameshift n.a. 

 
6 GA(CCA)T -3 bp ∆H254 3 

 
7 C(TGG)GT -3 bp L272R/∆G273 8 

 
8 GG(TCT)A -3 bp ∆L262 9 

 
9 ATT(CCG)CAC -3 bp ∆P256 4 

 
10 CT(AGA)C -3 bp ∆D253 2 

 
11 GA(CCA)T -3 bp ∆H254 3 

 
12 ATT(CCG)CAC -3 bp ∆P256 4 

 
13 A(TTG)GT -3 bp I260S/∆G261 2 

 
14 C(TGG)GT -3 bp L272R/∆G273 8 

 
15 CGT(TCG)TGG -3 bp ∆S276 3 

 
16 C(TGG)GT -3 bp L272R/∆G273 8 

 
17 A(TTG)GT -3 bp I260S/∆G261 2 

 
18 TC(AGC)C -3 bp ∆A270 7 

 
19 TC(AGC)C -3 bp ∆A270 7 

 
20 GGT(CTA)GAA -3 bp ∆L262 9 

 
21 ATT(GGT)CTA -3 bp ∆G261 1 

 
22 CT(CCT)G -3 bp ∆L271/272 1 

 
23 GGT(CTA)GAA -3 bp ∆L262 9 

 
24 CAC(AGT)GCG -3 bp ∆S258 2 

 
25 GG(TCT)A -3 bp ∆L262 9 

 
26 TCG(TGG)CAA -3 bp ∆W277 2 

 
27 TCA(GCC)CTC -3 bp ∆A270 7 

 
28 TC(AGC)C -3 bp ∆A270 7 

 
29 CTA(GAA)GAT -3 bp ∆E263 2 

 
30 CAC(AGT)GCG -3 bp ∆S258 2 

 
31 GCA(TCAG)CCC -4 bp frameshift n.a. 

 
32 ATT(CCG)CAC -3 bp ∆P256 4 

 
33 C(TGG)GT -3 bp L272R/∆G273 8 

 
34 CTA(GAA)GAT -3 bp ∆E263 2 

 
35 T(CGT)GG -3 bp ∆S276 3 

 
36 G(GTA)TT -3 bp G273V/∆I274 1 

 
37 TC(AGC)C -3 bp ∆A270 7 

 
38 C(TGG)GT -3 bp L272R/∆G273 8 
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Library 
 

Variant 
number 

DNA mutation 
Length 
change (bp) 

Protein mutation Occurrence 

 
39 TCG(TGG)CAA -3 bp ∆W277 2 

 
40 AG(TGCG)A -4 bp Frameshift n.a. 

 
41 C(TAG)AA -3 bp L262Q/∆E263 2 

 
42 CGT(TCG)TGG -3 bp ∆S276 3 

 
43 CTA(GAC)CAT -3 bp ∆D253 2 

 
44 AT(TCCG)C -4 bp frameshift n.a. 

 
45 GG(TCT)A -3 bp ∆L262 9 

 
46 C(TAG)AA -3 bp L262Q/∆E263 2 

 
47 TCA(GCC)CTC -3 bp ∆A270 7 

 
48 C(TGG)GT -3 bp L272R/∆G273 8 

 
49 GG(TCT)A -3 bp ∆L262 9 

 
50 GGT(CTAG)AAG -4 bp frameshift n.a. 

 
51 GG(TCT)A -3 bp ∆L262 9 

 
52 AAT(GCG)AGT -3 bp ∆A266 1 

 
53 C(TGG)GT -3 bp L272R/∆G273 8 

 
54 GG(TCT)A -3 bp ∆L262 9 

 
55 ATT(CCG)CAC -3 bp ∆P256 4 

 
56 GA(CCA)T -3 bp ∆H254 3 

 
57 AG(TGCG)A -4 bp frameshift n.a. 

 
58 GG(TCT)A -3 bp ∆L262 9 

 
59 GCC(CTCC)TGG -4 bp frameshift n.a. 

-6 bp 1 CTC(CTGGGT)ATT -6 bp ∆L272G273 2 

 
2 GC(GAGTGC)ATCA -6 bp ∆S267A268 4 

 
3 ATC(GGTCTA)GAC -6 bp ∆G251L252 2 

 
4 G(GTCTAG)AA -6 bp ∆G261L262 5 

 
5 CT(CCTGGGT)ATTC -7 bp frameshift n.a. 

 
6 ATC(GGTCTAGA)CCA -8 bp frameshift n.a. 

 
7 GG(TCTAGA)AGAT -6 bp ∆L262E263 8 

 
8 T(CGTGGC)AA -6 bp S276stop 1 

 
9 ATT(CGTTCG)TGG -6 bp ∆R275S276 1 

 
10 AT(TGGTCT)A -6 bp ∆G261L262 5 

 
11 GG(TCTAGA)A -6 bp ∆L262E263 8 

 
12 AT(TGGTCTAG)A -8 bp frameshift n.a. 

 
13 AT(TGGTCT)A -6 bp ∆G261L262 5 

 
14 GC(GAGTGC)A -6 bp ∆S267A268 4 

 
15 CGT(TCGTGG)CAA -6 bp ∆S276W277 4 

 
16 CTC(CTGGGTA)TTC -7 bp frameshift n.a. 

 
17 GGT(CTAGAA)GAT -6 bp ∆L262E263 8 

 
18 CT(GGGTAT)T -6 bp ∆G273I274 3 

 
19 GG(TCTAGA)A -6 bp ∆L262E263 8 

 
20 C(TAGAAG)AT -6 bp L262H/∆E263D264 6 

 
21 C(TCCTGG)GT -6 bp L271R/∆L272G273 1 

 
22 CT(GGGTAT)T -6 bp ∆G273I274 3 

 
23 GG(TCTAGA)A -6 bp ∆L262E263 8 

 
24 GG(TCTAGA)A -6 bp ∆L262E263 8 
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Library 
 

Variant 
number 

DNA mutation 
Length 
change (bp) 

Protein mutation Occurrence 

 
25 ATT(CCGCAC)AGT -6 bp ∆P256H257 7 

 
26 AT(CGGTCTA)G -7 bp frameshift n.a. 

 
27 AT(TGGTCT)A -6 bp ∆G261L262 5 

 
28 C(TAGAAG)AT -6 bp L262H/∆E263D264 6 

 
29 TCG(TGGCAA)ACA -6 bp ∆W276Q277 1 

 
30 C(TAGAAG)AT -6 bp L262H/∆E263D264 6 

 
31 CTC(ATCGGTC)TAG -7 bp frameshift n.a. 

 
32 C(ACAGTG)CG -6 bp H257P/∆S258A259 2 

 
33 AT(TGGTCT)A -6 bp ∆G261L262 5 

 
34 CTC(CTGGGTA)TTC -7 bp frameshift n.a. 

 
35 AT(TCCGCA)C -6 bp ∆P256H257 7 

 
36 CTC(CTGGGT)ATT -6 bp ∆L272G273 2 

 
37 ATT(CCGCAC)AGT -6 bp ∆P256H257 7 

 
38 ATT(GGTCTAGA)AG -7 bp frameshift n.a. 

 
39 T(CAGCCC)TC -6 bp S269F/∆A270L271 2 

 
40 C(ACAGTG)CG -6 bp H257P/∆S258A259 2 

 
41 GG(TCTAGA)A -6 bp ∆L262E263 8 

 
42 CGT(TCGTGGC)AAA -7 bp frameshift n.a. 

 
43 CC(GCACAG)T -6 bp ∆H257S258 1 

 
44 CGT(TCGTGG)CAA -6 bp ∆S276W277 4 

 
45 GC(GAGTGC)A -6 bp ∆S267A268 4 

 
46 TC(AGCCCTC)C -7 bp frameshift n.a. 

 
47 GGT(CTAGAA)GAT -6 bp ∆L262E263 8 

 
48 GG(TCTAGA)A -6 bp ∆L262E264 1 

 
49 CTA(GACCATA)TTC -7 bp frameshift n.a. 

 
50 AT(TCCGCA)C -6 bp ∆P256H257 7 

 
51 CGT(TCGTGG)CAA -6 bp ∆S276W277 4 

 
52 GCC(CTCCTG)GGT -6 bp ∆L271L272 2 

 
53 ATT(CCGCAC)AGT -6 bp ∆P256H257 7 

 
54 C(TAGAAG)AT -6 bp L262H/∆E263D264 6 

 
55 ATT(CCGCAC)AGT -6 bp ∆P256H257 7 

 
56 CAT(ATTCCG)CAC -6 bp ∆I255P256 3 

 
57 CT(AGACCA)T -6 bp ∆D253H254 2 

 
58 CAT(ATTCCG)CAC -6 bp ∆I255P256 3 

 
59 C(TAGAAG)AT -6 bp L262H/∆E263D264 6 

 
60 ATT(CCGCAC)AGT -6 bp ∆P256H257 7 

 
61 C(TAGAAG)AT -6 bp L262H/∆E263D264 6 

 
62 GC(CCTCCT)G -6 bp ∆L271L272 2 

 
63 AA(TGCGAGT)G -7 bp frameshift n.a. 

 
64 CTA(GACCAT)ATT -6 bp ∆D253H254 2 

 
65 GC(GAGTGC)A -6 bp ∆S267A268 4 

 
66 CTC(CTGGGTA)TTC -7 bp frameshift n.a. 

 
67 C(ACAGTGC)GA -7 bp frameshift n.a. 

 
68 T(CAGCCC)TC -6 bp S269F/∆A270L271 2 

 
69 CT(GGGTAT)T -6 bp ∆G273I274 3 
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Library 
 

Variant 
number 

DNA mutation 
Length 
change (bp) 

Protein mutation Occurrence 

 
70 G(ACCATA)TT -6 bp D253V/∆H254I255 1 

 
71 GC(ATCAGC)C -6 bp ∆S269A270 1 

 
72 CAT(ATTCCG)CAC -6 bp ∆I255P256 3 

 
73 CGT(TCGTGG)CAA -6 bp ∆S276W277 4 

 
74 AT(CGGTCT)A -6 bp ∆G251L252 2 

 
75 G(CCCTCC)TG -6 bp A270V/∆L271L272 1 

 
76 GGT(CTAGACC)ATA -7 bp frameshift n.a. 

 
77 TC(AGCCCT)C -6 bp ∆A270L271 1 

+3 bp 1 GGT+A+CT +1 bp frameshift n.a. 

 
2 CA+AAA+T +3 bp H254Q/N254a 1 

 
3 C+GGT+TA +3 bp R261a 1 

 
4 GGT+TTT+CTA +3 bp F251a 1 

 
5 C+ATT+TG +3 bp H271a 2 

 
6 G+GCT+AA +3 bp E263G/Stop 1 

 
7 CTC+AT+C +2 bp frameshift n.a. 

 
8 CA+CCA+A +3 bp H277a 1 

 
9 CTA+CTA+GAA +3 bp L262a 4 

 
10 C+GGC+AC +3 bp R256a 1 

 
11 ATT+ATG+CCG +3 bp M255a 1 

 
12 T+TG+CGT +2 bp frameshift n.a. 

 
13 GA+GCT+C +3 bp D253E/L253a 1 

 
14 CT+TGT+A +3 bp V262a 1 

 
15 GGT+GTT+CTA +3 bp V261a 1 

 
16 GA+GA+CC +2 bp frameshift n.a. 

 
17 GGTC+A+TAGA +1 bp frameshift n.a. 

 
18 GA+ATA+CCAT +3 bp D253E/Y253a 1 

 
19 G+AT+CGA +2 bp frameshift n.a. 

 
20 ATT+AGT+GGT +3 bp S260a 1 

 
21 GG+GTC+T +3 bp S261a 1 

 
22 CT+GTG+C +3 bp C271a 1 

 
23 GGT+TA+CTAG +2 bp frameshift n.a. 

 
24 G+AGG+CG +3 bp E265a 1 

 
25 CTA+T+GA +1 bp frameshift n.a. 

 
26 AT+GAT+T +3 bp M259a 1 

 
27 C+TA+CGC +2 bp frameshift n.a. 

 
28 CTC+CAT+CTG +3 bp H271a 2 

 
29 GGT+TG+CTAG +2 bp frameshift n.a. 

 
30 CT+CTT+C +3 bp F271a 3 

 
31 ATT+TCC+CCG +3 bp S255a 1 

 
32 C+ATC+TA +3 bp H261a 1 

 
33 CT+CTT+G +3 bp L272a 1 

 
34 CT/A+G+AGA +1 bp frameshift n.a. 

 
35 T+GTT+CA +3 bp C268a 1 

 
36 GGT+TAG+CTA +3 bp Stop 2 

 
37 CCGC+CGC+AC +3 bp P256a 1 
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Library 
 

Variant 
number 

DNA mutation 
Length 
change (bp) 

Protein mutation Occurrence 

 
38 AA+AG+TG +2 bp frameshift n.a. 

 
39 CGTT+GAT+CG +3 bp Stop 2 

 
40 CTC+TTT+CTG +3 bp F271a 3 

 
41 CGT+A+TC +1 bp frameshift n.a. 

 
42 CT+TCT+A +3 bp L262a 4 

 
43 C+GT+CGC +2 bp frameshift n.a. 

 
44 CTA+TCA+GAC +3 bp S252a 1 

 
45 C+AGT+TG +3 bp Q271a 1 

 
46 GG+CAT+T +3 bp I261a 1 

 
47 TCA+TCA+GCC +3 bp S269a 1 

 
48 ATC+AT+GGTC +2 bp frameshift n.a. 

 
49 CT+TCT+A +3 bp L262a 4 

 
50 GT+AC+CTAG +2 bp frameshift n.a. 

 
51 GGT+GAA+CTA +3 bp E261a 1 

 
52 A+ATA+CA +3 bp N278a 1 

 
53 ATT+CTT+CCG +3 bp L255A 1 

 
54 CT+TAG+G +3 bp R272a 1 

 
55 GGT+GCT+CTA +3 bp A261a 2 

 
56 GGT+A+CT +1 bp frameshift n.a. 

 
57 CC+C+GCA +1 bp frameshift n.a. 

 
58 CT+CG+AG +2 bp frameshift n.a. 

 
59 CT+TGT+A +3 bp V252a 1 

 
60 ATT+ATT+CCG +3 bp I255a 1 

 
61 CT+TCA+A +3 bp Q262a 1 

 
62 CT+TC+GG +2 bp frameshift n.a. 

 
63 CT+TTT+A +3 bp L262a 4 

 
64 C+CTC+TA +3 bp P251a 1 

 
65 GAC+TC+C +2 bp frameshift n.a. 

 
66 GGT+GG+CTAG +2 bp frameshift n.a. 

 
67 GGTC+CAT+TA +3 bp P261a 2 

 
68 GCGA+CGA+TT +3 bp T259a 1 

 
69 CTC+TTT+CTG +3 bp F271a 3 

 
70 CCG+TC+C +2 bp frameshift n.a. 

 
71 GCGAT+GAG+T +3 bp I260M/S260a 1 

 
72 CTC+CCC+CTG +3 bp P271a 1 

 
73 GG+CTA+T +3 bp Y261a 1 

 
74 GGT+GCT+CTA +3 bp A261a 2 

 
75 T+CT+GGC +2 bp frameshift n.a. 

 
76 GGT+CCT+GTA +3 bp P261a 2 

  77 GGTC+CA+TAG +2 bp frameshift n.a. 

 



 

 

Supplementary Table S16. Methods developed for the generation of libraries with random insertions, repeats and/or deletions. 

 

Method Principle Mutational scope 
(Type of mutations/Number per target 
sequence) 

Frameshift 
InDels (%) 

Reference 

RID Random Insertion/Deletion mutagenesis. 
(1) A circular single-stranded DNA (ssDNA) corresponding to the sense chain of the 
target gene is produced from the linear double-stranded target gene by linker 
ligation, restriction digestion, circularization by self-ligation and exonuclease 
digestion to remove the anti-sense chain. (2) Random cleavage (linearization) of the 

circular ssDNA at single positions by treatment with Ce(IV)–EDTA complex. (3) 

Ligation of 5’- and 3’- anchors at both ends of the ssDNA. These anchors are 
designed differently depending whether a deletion or an insertion is to be introduced. 
(4) PCR amplification of the DNAs linked to the two anchors at both ends. (5) 
Digestion by a type IIS restriction enzyme (e.g., BciVI) removes the anchor and 
leaves a deletion or an insertion in the target gene (depending on how the anchors’ 
sequences have been designed). (6) Reconstitution of the target gene by self-
ligation (re-circularization) and linearization by restriction digestion. The resulting 
products can then be cloned in a vector to finalize the variant library. 

One single InDel per variant; the procedure 
also generates random point substitutions 
presumably during the PCR step.[a] 

~10%  
 

 
 

20 

Segmental 
mutagenesis 

(1) The vector is first linearized either at the 5′ or 3′ end of the target gene. (2) 

Progressive BAL-31 exonuclease action and removal of the remaining vector DNA 

yields two batches of either 3′ or 5′ truncated gene fragments. (3) Combinatorial 

assembly of these two ends to generate variants of the target gene yields the 
segmental mutagenesis library which is then ligated into a vector and transformed 
into E.coli. 

One single deletion or one tandem repeat per 
variant (on a defined region of the target gene) 

~66%  
 

21 

RAISE RAndom Insertional-deletional Strand Exchange mutagenesis. 
(1) The target gene is fragmented using DNAseI. (2) The obtained fragments are 
extended randomly using Terminal deoxynucleotidyl transferase (TdT). (3) Assembly 
PCR with the TdT-extended fragment results in the shuffling of InDels and 
substitutions (generated by TdT or during the PCR steps) within the target gene. 

Combination of region-exchanged mutations 
and substitutions. [b] 

~66%  
22 

COBARDE Codon-based random deletion mutagenesis. 
(1) Chemical synthesis (based on the phosphoramidite method) generating a 
population of mutagenic oligonucleotides with multiple codon deletions in reference 
to the target gene. The mutagenic process consists of multiple successive cycles of 
3-nucleotide extension as follow: (i) transient blockage of a fraction of the 
synthesized oligos, (ii) extension of the unblocked oligos by 3 nucleotides, (iii) 
removal of the blocking groups. (2) The resulting oligonucleotide mixture 
(corresponding the deletion variants) is purified, duplexed using a DNA polymerase 
and ligated into a vector. 

One or multiple combined codon-based 
deletions per variant (usually on a defined 
region of the target gene). [c] 

<5%  
 
 

23 

TRINS Tandem repeat insertion (TRINS). 
(1) The target gene is fragmented using DNAseI. (2) An aliquot of the generated 
fragments is converted into single-stranded circular DNA using CircLigase. (3) 
Tandem repeats are generated by mixing linear fragments together with circularized 
fragments in an assembly PCR reaction involving rolling-circle polymerisation. (4) 
Assembly PCR products are then cloned to finalized the TRINS library. 

One or multiple tandem repeats per variants. 
Tandem repeat size variable (depending on 
the size of the initial DNAseI linear fragment). 
[d] 

~66%  
 

24 

Pentapeptide 
scanning 

(1) An engineered transposon is randomly inserted within the vector containing the 
target gene by in vivo or in vitro reaction (depending on the type of transposon 

One single insertion of defined size and 
sequence (5 nucleotide triplets) per variant. 

Not reported  
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used). The sub-library consisting of only of the target gene with a single transposon 
insertion can be isolated by DNA electrophoresis and size selection. (2) Restriction 
digestion (e.g., with NotI in the case of modified Mu transposon) leaves a 15 bp 
insertion after self-ligation of the target gene. 

25, 26 

TND Triplet nucleotide deletion 
1) An engineered transposon (dubbed MuDel) is randomly inserted within the vector 
containing the target gene using in vitro. The sub-library consisting of only of the 
target gene with a single transposon insertion can be isolated by DNA 
electrophoresis and size selection. (2) Digestion with type IIS restriction enzyme 
MlyI, results in a triplet deletion upon self-ligation of the target gene. 

One single nucleotide triplet deletion per 
variant. [e] 

Not reported  
 

1, 27 

CDM Codon Deletion Mutagenesis 
1) The target gene is cloned in a vector such as the resulting protein is N-terminally 
fused to an intein. (2) An engineered transposon (dubbed MuCDM) is then randomly 
inserted within the target gene using in vitro. MuCDM contains an intein sequence 
fused to an antibiotic resistance (e.g., TEM1), thus enabling selection only if 
transposon insertion is in the reading frame of the target gene. (3) An inverse PCR 
reaction with primers based on the transposon’s terminal sequences is performed to 
amplify the vector from the transposon’s insertion point. These primers carry a 
carefully positioned type IIS restrictions site (e.g., for BsgI) to remove a specific 
number of nucleotides from the resulting inverse PCR product. (3) Digestion by the 
type IIS restriction enzyme removes 1 to 5 nucleotide codons from the target gene 
depending on the positioning of the recognition sequence on the primers. (4) CDM 
libraries are generated upon self-ligation and transformation of the vector carrying 
the target gene variants in E. coli. 

Deletions of one to five consecutive codons. [f] 
 

<10%  
 
 
 
 

28 

Extensive gene 
truncation 

1) An engineered transposon (MuDel) is randomly inserted within the target gene by 
in vitro transposition. (2) 5′ and 3′ fragment sub-libraries of the target gene are 
amplified in two separate PCR reactions. In each reaction, one primer is 
complementary to the 5′ or 3′ constant regions of the target gene (adding BsaI at 
these ends), and the other to a sequence located in the transposon. (3) Digestion 
with BsaI creates unique overhangs in each sub-library complementary to unique 
overhangs in a DNA linker (free of MlyI sites) to favor directional ligation between 
these sub-libraries and the linker (4) The product of ligation was digested with MlyI 
removing the transposon sequence. (5) Intramolecular blunt-end ligation results in a 
circular product joining the 5′ and 3′ terminal fragments of the target gene. This 
circularized product is a library corresponding to the target genes with extensive 
truncation. (7) PCR on this circular library with primers complementary to the termini 
of the target gene results in a linear version of the extensive truncation library. (8) 
The final library of truncated variants of the desired size range is isolated by gel 
electrophoresis and cloned in a vector. 

Extensive DNA truncations of desired size 
range. [g] 

Not reported 29 

InDel assembly Assembly approach relying on successive cycles of DNA restriction and ligation to 
assemble a DNA library on beads. At each assembly cycle, DNA templates 
immobilized on beads are restricted with a type IIs endonuclease (e.g., SapI) and 
building blocks annealed and ligated. After ligation, the cycle can be restarted. 
Compositional variation is achieved primarily by combining controlled pools of 
building blocks of various length. 

One or multiple combined codon-based 
insertions and deletions per variant (usually on 
a defined region of the target gene). [h] 

Not reported  
 

30 
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[a] The RID mutagenesis was validated by randomly replacing three consecutive bases by recognition sequence for BglII (AGATCT) in the GFPuv gene: 17 variants (out of 19 randomly picked 
variants for sequencing; ~90%) displayed the desired mutations; 2 variants out of the pool of 19 variants (~10%) were frameshifted (deletion of 4 consecutive bases instead of 3); in addition, 6 
variants out of 19 (~30%) also displayed single point substitution. The RID mutagenesis has also been applied to randomly replace three consecutive bases by a mixture of 20 codons, effectively 
resulting in point substitution mutants. 
 
[b] RAISE was validated using TEM-1 beta-lactamase as target gene. After transformation of the library (~2,000 variants), 41 colonies were randomly picked and sequenced leading to the 
identification of region-exchanged mutations and point substitutions. Twenty-nine region-exchanged mutations were found in 19 variants. The number of the region-exchanged mutations per variant 
was 1 (12 variants), 2 (6 variants), or 5 (1 variants). Approximately two-thirds of the region-exchanged mutations were frameshifts. Seventy-nine point substitutions were identified over 34 variants, 
among which 15 had also region-exchanged mutations. Three variants out of the 41 that sequenced were parental sequences, presumably due to vector self-ligation. 
 
[c] COBARDE was validated using a sequence of 9 residues forming the omega loop in TEM-1 beta-lactamase: 4 parental sequences (presumably vector self-ligation) and 1 frame-shift (insertion of 
1 bp) were found out of 34 sequenced transformants. 
 
[d] TRINS was validated using three different templates: TEM-1 beta-lactamase, m.HaeIII methyltransferase and KE70 R6 (a laboratory-evolved variant of computationally designed Kemp 
eliminase). Out of 35 sequenced variants (from the three naïve libraries), 27 carried one insertion per gene, 4 had two and 4 had three. Two-third of the tandem repeats (23 of 35) resulted in 
frameshift. The sequenced variants also carried ~2 random point substitutions per variant presumably incorporated during PCR steps. 
 
[e] TND was validated using TEM-1 beta-lactamase (Jones, 2005) and eGFP (Baldwin et al., 2009; Arpino et al., 2014) as templates. In the case of TEM-1, the library generation process was 
combined with two consecutive selection steps: (i) selection for loss of ampicillin resistance upon transposition insertion within bla) and (ii) selection for retention of antibiotic resistance upon triplet 
nucleotide deletion. In the case of eGFP, the final library consisted of ~2,500 variants and 153 variants were chosen for sequencing based on the colony phenotype (88 fluorescent and 65 
nonfluorescent). This led to the identification of 87 unique triplet deletions (out of 153): 42 triplet deletions among the 88 fluorescent variants and 45 among the 65 nonfluorescent ones. No additional 
point substitutions or frameshifts were observed among the sequenced variants. 
 
[f] CMD was validated using super folder GFP (sfGFP) as template. Five libraries, corresponding to the deletion of 1 to 5 consecutive codons, were generated and around 20 variants from each 
library (amounting to a total of 104 sequences) were sequenced, showing that the majority of the variants (~92%) contained the desired deletions. Eight out of 104 sequences had either no 
mutations or unwanted mutations, most of them due to incomplete BsgI digestion.  
 
[g] The extensive gene truncation method was validated using an artificial RNA ligase enzyme (DNA size ~ 350 bp) as template and resulted in a library with truncations up to ~235 bp. Next 
generation sequencing analysis of the library revealed that it contained 9,006 unique deletions (~32% of the 27,730 possible unique deletions in this size range). The distribution of deletion lengths 
was found to range between 6 and 235 nucleotides in length. Deletions longer than 110 bp were observed at 50% or greater of the number of all possible deletions. The library was subjected to in 
vitro selection and functional variants with deletions of up to 18 amino acids of the parental enzyme. 
 
[h] InDel assembly was validated using part of TEM-1 beta-lactamase’s omega loop (5 residues, 164RWEPE168). The library was designed in order to explore the sequence neighbourhood of a 
previously reported variant (164RYYGE168) by using biased mixes of building blocks. The resulting library was analysed by next-generation sequencing before and after selection for ceftazidime 
resistance and demonstrated selective enrichment of the target sequence (164RYYGE168) as well as variants with extensions (e.g., 164RGYMKER168b).  
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Supplementary Table S17. Oligonucleotides used in this study. 

 

Experiment Oligonucleotide name and sequence 

Preparation of SubsNNN by PCR using pUC57-
Del2 as template  

Subs-F: 5'-[Phos]-ATGTCGACTCGACTAGTGCTTGGATTCTCA-3’  
Subs-B: 5'-[Phos]-NNNGGGATGACTCCATGGACTTCGC-3’  
(MlyI sites underlined) 

TransIns adapter to generate pUC57-TransIns 
from pUC57-TransDel 

TransIns-F: 5'-[Phos]- 
AATTCAGATCTGCGGCCGCGCACGAAAAACGCGAAAGCGTTTCACGAT-
AAATGCGAAAACGGA -3'  
TransIns-R: 5'-[Phos]- 
CTAGTCCGTTTTCGCATTTATCGTGAAACGCTTTCGCGTTTTTCGTGCG-
CGGCCGCAGATCTG-3'  
(NotI sites underlined) 

Del3 adapter to generate pUC57-Del3 from 
pUC57-Del2 

Del3-F: 5'-[Phos]-CATGGAGTCATCCCGGGA-3' 
Del3-R: 5'-[Phos]-AGCTTCCCGGGATGACTC-3' 

Ins adapter to generate pUC57-Ins from pUC57-
Del2 

Ins-F: 5'-[Phos]-AATTCTAGATCTGCGGCCGCATCCGTCTTCAGTCGCTGCTGA-3' 
Ins-R: 5'-[Phos]-CTAGTCAGCAGCGACTGAAGACGGATGCGGCCGCAGATCTAG-3' 

Ins1/2/3 adapter to generate libraries pUC57-
Ins1/2/3 from pUC57-Ins 

Ins1/2/3-F: 5'-[Phos]-CATGGCTGAAGGCCACTCGAGATCGAT (NNN)1/2/3 GCGCTGACTCA-3' 
Ins1/2/3-R: 5'-[Phos]-AGCTTGAGTCAGCGC (NNN)1/2/3 ATCGATCTCGAGTGGCCTTCAGC-3' 

Removal of MlyI recognition site in the origin of 
replication of pUC19 by saturation mutagenesis 

Ori-MlyI-F: 5'-ACCCGGTAAGACACGACTTATCGCCACTGGCA-3' 
Ori-MlyI-B: 5'-GTGTCTTACCGGGTTGGNNTCAAGACGATAGTTACCGGA-3' 

Removal of AcuI recognition site in the origin of 
replication of pUC19 by saturation mutagenesis 

Ori-AcuI-F: 5'-TATCTGCGCTCTGNNGAAGCCAGTTACCTT-3' 
Ori-AcuI-B: 5'-AGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTA-3' 

Amplification of the origin of replication of pUC19 
for assembly into the pID vectors 

Ori-AflII: 5'-GGACTTAAGGAGCAAAAGGCCAGCAAAAGG-3' 
Ori-SpeI: 5'-GCACACTAGTCTCATGACCAAAATCCCTTAACG-3' 

(1) Amplification of TetR from pASK-IBA5plus 
(TetR-F/TetR-B) 
(2) Amplification of AmpR from pID-T7 (mTEM1-
F/mTEM1-B) 
(3) Overlap PCR to form AmpR-TetR operon 
(mTEM1-F/TetR-B) 

TetR-F: 5'-TGATTAAGCATTGGTAGGAATTAATGATGTCTCGTT-3' 
TetR-B: 5'-TTAAACTAGTGAAGTTACCATCACGGA-3' 
mTEM1-F: 5'-CTGAAAGGACGTCAGGTGGCAC-3' 
mTEM1-B: 5'-TAATTCCTACCAATGCTTAATCAGTGAGGCA-3' 

Amplification of Tet promoter from pASK-IBA5plus Tet-prom-F: 5'-AGGCTTAAGACATGACCCGACACCATCGA-3' 
Tet-prom-B: 5'-GGCTCATATGTATATCTCCTTCTTAAAG-3' 
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