20 research outputs found

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Dataset to support: "Quantifying photoluminescence variability in monolayer molybdenum disulfide films grown by chemical vapour deposition"

    No full text
    Monolayer molybdenum disulfide (MoS2) is a promising candidate for inclusion in optoelectronic technologies, owing to its two-dimensional (2D) nature and resultant novel photoluminescence (PL). Chemical vapour deposition (CVD) is an important method for the preparation of large-area films of monolayer MoS2. The PL character of as-prepared monolayer MoS2 must be well understood to facilitate detailed evaluation of any process-induced effects during device fabrication. We comparatively explore the PL emission from four different commercially available CVD-grown MoS2 monolayer films. We characterize the samples via Raman and PL spectroscopy, using both single-spot and mapping techniques, while atomic force microscopy (AFM) is applied to map the surface structure. Via multipeak fitting, we decompose the PL spectra into constituent exciton and trion contributions, enabling an assessment of the quality of the MoS2 monolayers. We find that the PL character varies significantly from sample to sample. We also reveal substantial inhomogeneity of the PL signal across each individual MoS2 film. We attribute the PL variation to non-uniform MoS2 film morphologies that result from the nucleation and coalescence processes during the CVD film development. Understanding the large variability in starting PL behaviour is vital to optimize the optoelectronic properties for MoS2-based devices

    Dataset to support - "Influence of co-reactants on surface passivation by nanoscale hafnium oxide layers grown by atomic layer deposition on silicon"

    No full text
    Hafnium oxide thin films have attracted considerable interest for passivation layers, protective barriers, and anti-reflection coatings. Atomic layer deposition offers a route to produce conformal films at the nanometre scale, but there is a lack of clarity over how the growth conditions affect the film properties. Here we present a study into the role of different co-reactants (O2 plasma, O3 and H2O) for the atomic layer deposition of HfOx on n-type silicon from a tetrakis(dimethylamido)hafnium (TDMAH) precursor at 200 °C followed by post-deposition annealing (up to 500 °C). Through X-ray diffraction and X-ray photoelectron spectroscopy, we demonstrate variations in film composition, stoichiometry and crystallinity with co-reactant. Depth profiling conducted with X-ray photoelectron spectroscopy reveals differences in composition between the HfOx surface and the HfOx/Si interface. We also determine differences in the charge level and chemical passivation through photoconductance decay measurements and Kelvin probe analysis. We find that surface recombination velocities <10 cm s-1 are possible for HfOx films, with the best passivation achieved for H2O-based HfOx (SRVs as low as ~5 cm s-1). We show that with TDMAH as a hafnium precursor, neither co-reactant choice nor annealing ambient influence resulting charge polarity
    corecore