8,284 research outputs found

    The Anisotropic Bak-Sneppen model

    Get PDF
    The Bak-Sneppen model is shown to fall into a different universality class with the introduction of a preferred direction, mirroring the situation in spin systems. This is first demonstrated by numerical simulations and subsequently confirmed by analysis of the multitrait version of the model, which admits exact solutions in the extremes of zero and maximal anisotropy. For intermediate anisotropies, we show that the spatiotemporal evolution of the avalanche has a power law `tail' which passes through the system for any non-zero anisotropy but remains fixed for the isotropic case, thus explaining the crossover in behaviour. Finally, we identify the maximally anisotropic model which is more tractable and yet more generally applicable than the isotropic system

    Universal persistence exponents in an extremally driven system

    Full text link
    The local persistence R(t), defined as the proportion of the system still in its initial state at time t, is measured for the Bak--Sneppen model. For 1 and 2 dimensions, it is found that the decay of R(t) depends on one of two classes of initial configuration. For a subcritical initial state, R(t)\sim t^{-\theta}, where the persistence exponent \theta can be expressed in terms of a known universal exponent. Hence \theta is universal. Conversely, starting from a supercritical state, R(t) decays by the anomalous form 1-R(t)\sim t^{\tau_{\rm ALL}} until a finite time t_{0}, where \tau_{\rm ALL} is also a known exponent. Finally, for the high dimensional model R(t) decays exponentially with a non--universal decay constant.Comment: 4 pages, 6 figures. To appear in Phys. Rev.

    Spherically Symmetric, Self-Similar Spacetimes

    Get PDF
    Self-similar spacetimes are of importance to cosmology and to gravitational collapse problems. We show that self-similarity or the existence of a homothetic Killing vector field for spherically symmetric spacetimes implies the separability of the spacetime metric in terms of the co-moving coordinates and that the metric is, uniquely, the one recently reported in [cqg1]. The spacetime, in general, has non-vanishing energy-flux and shear. The spacetime admits matter with any equation of state.Comment: Submitted to Physical Review Letter

    Extremal driving as a mechanism for generating long-term memory

    Full text link
    It is argued that systems whose elements are renewed according to an extremal criterion can generally be expected to exhibit long-term memory. This is verified for the minimal extremally driven model, which is first defined and then solved for all system sizes N\geq2 and times t\geq0, yielding exact expressions for the persistence R(t)=[1+t/(N-1)]^{-1} and the two-time correlation function C(t_{\rm w}+t,t_{\rm w})=(1-1/N)(N+t_{\rm w})/(N+t_{\rm w}+t-1). The existence of long-term memory is inferred from the scaling of C(t_{\rm w}+t,t_{\rm w})\sim f(t/t_{\rm w}), denoting {\em aging}. Finally, we suggest ways of investigating the robustness of this mechanism when competing processes are present.Comment: 5 pages, no figures; requires IOP style files. To appear as a J. Phys. A. lette

    A mean field description of jamming in non-cohesive frictionless particulate systems

    Full text link
    A theory for kinetic arrest in isotropic systems of repulsive, radially-interacting particles is presented that predicts exponents for the scaling of various macroscopic quantities near the rigidity transition that are in agreement with simulations, including the non-trivial shear exponent. Both statics and dynamics are treated in a simplified, one-particle level description, and coupled via the assumption that kinetic arrest occurs on the boundary between mechanically stable and unstable regions of the static parameter diagram. This suggests the arrested states observed in simulations are at (or near) an elastic buckling transition. Some additional numerical evidence to confirm the scaling of microscopic quantities is also provided.Comment: 9 pages, 3 figs; additional clarification of different elastic moduli exponents, plus typo fix. To appear in PR

    Glassy dynamics in granular compaction

    Full text link
    Two models are presented to study the influence of slow dynamics on granular compaction. It is found in both cases that high values of packing fraction are achieved only by the slow relaxation of cooperative structures. Ongoing work to study the full implications of these results is discussed.Comment: 12 pages, 9 figures; accepted in J. Phys: Condensed Matter, proceedings of the Trieste workshop on 'Unifying concepts in glass physics

    Ab Initio Study of Screw Dislocations in Mo and Ta: A new picture of plasticity in bcc transition metals

    Full text link
    We report the first ab initio density-functional study of screw dislocations cores in the bcc transition metals Mo and Ta. Our results suggest a new picture of bcc plasticity with symmetric and compact dislocation cores, contrary to the presently accepted picture based on continuum and interatomic potentials. Core energy scales in this new picture are in much better agreement with the Peierls energy barriers to dislocation motion suggested by experiments.Comment: 3 figures, 3 table

    Cardiovascular disease in a cohort exposed to the 1940-45 Channel Islands occupation

    Get PDF
    BACKGROUND To clarify the nature of the relationship between food deprivation/undernutrition during pre- and postnatal development and cardiovascular disease (CVD) in later life, this study examined the relationship between birth weight (as a marker of prenatal nutrition) and the incidence of hospital admissions for CVD from 1997–2005 amongst 873 Guernsey islanders (born in 1923–1937), 225 of whom had been exposed to food deprivation as children, adolescents or young adults (i.e. postnatal undernutrition) during the 1940–45 German occupation of the Channel Islands, and 648 of whom had left or been evacuated from the islands before the occupation began. METHODS Three sets of Cox regression models were used to investigate (A) the relationship between birth weight and CVD, (B) the relationship between postnatal exposure to the occupation and CVD and (C) any interaction between birth weight, postnatal exposure to the occupation and CVD. These models also tested for any interactions between birth weight and sex, and postnatal exposure to the occupation and parish of residence at birth (as a marker of parish residence during the occupation and related variation in the severity of food deprivation). RESULTS The first set of models (A) found no relationship between birth weight and CVD even after adjustment for potential confounders (hazard ratio (HR) per kg increase in birth weight: 1.12; 95% confidence intervals (CI): 0.70 – 1.78), and there was no significant interaction between birth weight and sex (p = 0.60). The second set of models (B) found a significant relationship between postnatal exposure to the occupation and CVD after adjustment for potential confounders (HR for exposed vs. unexposed group: 2.52; 95% CI: 1.54 – 4.13), as well as a significant interaction between postnatal exposure to the occupation and parish of residence at birth (p = 0.01), such that those born in urban parishes (where food deprivation was worst) had a greater HR for CVD than those born in rural parishes. The third model (C) found no interaction between birth weight and exposure to the occupation (p = 0.43). CONCLUSION These findings suggest that the levels of postnatal undernutrition experienced by children, adolescents and young adults exposed to food deprivation during the 1940–45 occupation of the Channel Islands were a more important determinant of CVD in later life than the levels of prenatal undernutrition experienced in utero prior to the occupatio

    Tensorial Constitutive Models for Disordered Foams, Dense Emulsions, and other Soft Nonergodic Materials

    Full text link
    In recent years, the paradigm of `soft glassy matter' has been used to describe diverse nonergodic materials exhibiting strong local disorder and slow mesoscopic rearrangement. As so far formulated, however, the resulting `soft glassy rheology' (SGR) model treats the shear stress in isolation, effectively `scalarizing' the stress and strain rate tensors. Here we offer generalizations of the SGR model that combine its nontrivial aging and yield properties with a tensorial structure that can be specifically adapted, for example, to the description of fluid film assemblies or disordered foams.Comment: 18 pages, 4 figure

    Coarsening and Slow-Dynamics in Granular Compaction

    Full text link
    We address the problem of the microscopic reorganization of a granular medium under a compaction process in the framework of Tetris-like models. We point out the existence of regions of spatial organization which we call domains, and study their time evolution. It turns out that after an initial transient, most of the activity of the system is concentrated on the boundaries between domains. One can then describe the compaction phenomenon as a coarsening process for the domains, and a progressive reduction of domain boundaries. We discuss the link between the coarsening process and the slow dynamics in the framework of a model of active walkers on active substrates.Comment: Revtex 4 pages, 4 figures, in press in PRL. More info http://axtnt3.phys.uniroma1.it/Tetri
    • …
    corecore