2 research outputs found

    Interaction Proteomics Suggests a New Role for the Tfs1 Protein in Yeast

    No full text
    The PEBP (phosphatidylethanolamine-binding protein) family is a large group of proteins whose human member, hPEBP1, has been shown to play multiple functions, influencing intracellular signaling cascades, cell cycle regulation, neurodegenerative processes, and reproduction. It also acts, by an unknown mechanism, as a metastasis suppressor in a number of cancers. A more complete understanding of its biological role is thus necessary. As the yeast <i>Saccharomyces cerevisiae</i> is a powerful and easy to handle model organism, we focused on Tfs1p, the yeast ortholog of hPEBP1. In a previous study based on a two-hybrid approach, we showed that Tfs1p interacts and inhibits Ira2p, a GTPase Activating Protein (GAP) of the small GTPase Ras. To further characterize the molecular functions of Tfs1p, we undertook the identification of protein complexes formed around Tfs1p using a targeted proteomics approach. Complexed proteins were purified by tandem-affinity, cleaved with trypsin, and identified by nanoflow liquid chromatography coupled with tandem mass spectrometry. Overall, 14 new interactors were identified, including several proteins involved in intermediate metabolism. We confirmed by co-immunoprecipitation that Tfs1p interacts with Glo3p, a GAP for Arf GTPases belonging to the Ras superfamily of small GTPases, indicating that Tfs1p may be involved in the regulation of another GAP. We similarly confirmed the binding of Tfs1p with the metabolic enzymes Idp1p and Pro1p. Integration of these results with known functional partners of Tfs1p shows that two subnetworks meet through the Tfs1p node, suggesting that it may act as a bridge between cell signaling and intermediate metabolism in yeast

    Design, Synthesis, and Biological Activity of Pyridopyrimidine Scaffolds as Novel PI3K/mTOR Dual Inhibitors

    No full text
    The design, synthesis, and screening of dual PI3K/mTOR inhibitors that gave nanomolar enzymatic and cellular activities on both targets with an acceptable kinase selectivity profile are described. A docking study was performed to understand the binding mode of the compounds and to explain the differences in biological activity. In addition, cellular effects of the best dual inhibitors were determined on six cancer cell lines and compared to those on a healthy diploid cell line for cellular cytotoxicity. Two compounds are highly potent on cancer cells in the submicromolar range without any toxicity on healthy cells. A more detailed analysis of the cellular effect of these PI3K/mTOR dual inhibitors demonstrated that they induce G1-phase cell cycle arrest in breast cancer cells and trigger apoptosis. These compounds show an interesting kinase profile as dual PI3K/mTOR tool compounds or as a chemical series for further optimization to progress into in vivo experiments
    corecore