266 research outputs found
Anomalous Neutrino Interaction, Muon g-2, and Atomic Parity Nonconservation
We propose a simple unified description of two recent precision measurements
which suggest new physics beyond the Standard Model of particle interactions,
i.e. the deviation of in deep inelastic neutrino-nucleon
scattering and that of the anomalous magnetic moment of the muon. Our proposal
is also consistent with a third precision measurement, i.e. that of parity
nonconservation in atomic Cesium, which agrees with the Standard Model.Comment: 9 pages, including 1 figure, latest muon g-2 information adde
The 3-3-1 model with S_4 flavor symmetry
We construct a 3-3-1 model based on family symmetry S_4 responsible for the
neutrino and quark masses. The tribimaximal neutrino mixing and the diagonal
quark mixing have been obtained. The new lepton charge \mathcal{L} related to
the ordinary lepton charge L and a SU(3) charge by L=2/\sqrt{3} T_8+\mathcal{L}
and the lepton parity P_l=(-)^L known as a residual symmetry of L have been
introduced which provide insights in this kind of model. The expected vacuum
alignments resulting in potential minimization can origin from appropriate
violation terms of S_4 and \mathcal{L}. The smallness of seesaw contributions
can be explained from the existence of such terms too. If P_l is not broken by
the vacuum values of the scalar fields, there is no mixing between the exotic
and the ordinary quarks at the tree level.Comment: 20 pages, revised versio
Muon Anomalous Magnetic Moment and Lepton Flavor Violation
A non-universal interaction, which involves only the third family leptons
induces lepton flavor violating couplings and contributes to the anomalous
magnetic moment of muon. In this paper, we study the effects of non-universal
interaction on muon (g-2) and rare decay by using an
effective lagrangian technique, and a phenomenological model where
couples only to the third family lepton. We find that the deviation
from the theory can be explained and the induced rate
could be very close to the current experimental limit. In the model,
has to be lighter than 2.6 TeV.Comment: references added, the version to appear in PR
A first-principles study of oxygen vacancy pinning of domain walls in PbTiO3
We have investigated the interaction of oxygen vacancies and 180-degree
domain walls in tetragonal PbTiO3 using density-functional theory. Our
calculations indicate that the vacancies do have a lower formation energy in
the domain wall than in the bulk, thereby confirming the tendency of these
defects to migrate to, and pin, the domain walls. The pinning energies are
reported for each of the three possible orientations of the original Ti-O-Ti
bonds, and attempts to model the results with simple continuum models are
discussed.Comment: 8 pages, with 3 postscript figures embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/lh_dw/index.htm
Charmless Decays Based on the six-quark Effective Hamiltonian with Strong Phase Effects II
We provide a systematic study of charmless decays (
and denote pseudoscalar and vector mesons, respectively) based on an
approximate six-quark operator effective Hamiltonian from QCD. The calculation
of the relevant hard-scattering kernels is carried out, the resulting
transition form factors are consistent with the results of QCD sum rule
calculations. By taking into account important classes of power corrections
involving "chirally-enhanced" terms and the vertex corrections as well as weak
annihilation contributions with non-trivial strong phase, we present
predictions for the branching ratios and CP asymmetries of decays into
PP, PV and VV final states, and also for the corresponding polarization
observables in VV final states. It is found that the weak annihilation
contributions with non-trivial strong phase have remarkable effects on the
observables in the color-suppressed and penguin-dominated decay modes. In
addition, we discuss the SU(3) flavor symmetry and show that the symmetry
relations are generally respected
B_c meson rare decays in the light-cone quark model
We investigate the rare decays
and in the framework of the
light-cone quark model (LCQM). The transition form factors are calculated in
the space-like region and then analytically continued to the time-like region
via exponential parametrization. The branching ratios and longitudinal lepton
polarization asymmetries (LPAs) for the two decays are given and compared with
each other. The results are helpful to investigating the structure of
meson and to testing the unitarity of CKM quark mixing matrix. All these
results can be tested in the future experiments at the LHC.Comment: 9 pages, 11 figures, version accepted for publication in EPJ
Quantum physics in inertial and gravitational fields
Covariant generalizations of well-known wave equations predict the existence
of inertial-gravitational effects for a variety of quantum systems that range
from Bose-Einstein condensates to particles in accelerators. Additional effects
arise in models that incorporate Born reciprocity principle and the notion of a
maximal acceleration. Some specific examples are discussed in detail.Comment: 25 pages,1 figure,to appear in "Relativity in Rotating Frame
Rare Decays of \Lambda_b->\Lambda + \gamma and \Lambda_b ->\Lambda + l^{+} l^{-} in the Light-cone Sum Rules
Within the Standard Model, we investigate the weak decays of and with the light-cone
sum rules approach. The higher twist distribution amplitudes of
baryon to the leading conformal spin are included in the sum rules for
transition form factors. Our results indicate that the higher twist
distribution amplitudes almost have no influences on the transition form
factors retaining the heavy quark spin symmetry, while such corrections can
result in significant impacts on the form factors breaking the heavy quark spin
symmetry. Two phenomenological models (COZ and FZOZ) for the wave function of
baryon are also employed in the sum rules for a comparison, which can
give rise to the form factors approximately 5 times larger than that in terms
of conformal expansion. Utilizing the form factors calculated in LCSR, we then
perform a careful study on the decay rate, polarization asymmetry and
forward-backward asymmetry, with respect to the decays of , .Comment: 38 pages, 15 figures, some typos are corrected and more references
are adde
Supersymmetric effects in top quark decay into polarized W-boson
We investigate the one-loop supersymmetric QCD (SUSY-QCD) and electroweak
(SUSY-EW) corrections to the top quark decay into a b-quark and a longitudinal
or transverse W-boson. The corrections are presented in terms of the
longitudinal ratio \Gamma(t-->W_L b)/\Gamma(t--> W b) and the transverse ratio
\Gamma(t-->W_- b)/\Gamma(t--> W b). In most of the parameter space, both
SUSY-QCD and SUSY-EW corrections to these ratios are found to be less than 1%
in magnitude and they tend to have opposite signs. The corrections to the total
width \Gamma(t-->W b) are also presented for comparison with the existing
results in the literature. We find that our SUSY-EW corrections to the total
width differ significantly from previous studies: the previous studies give a
large correction of more than 10% in magnitude for a large part of the
parameter space while our results reach only few percent at most.Comment: Version in PRD (explanation and refs added
Search for TeV Scale Physics in Heavy Flavour Decays
The subject of heavy flavour decays as probes for physics beyond the TeV
scale is covered from the experimental perspective. Emphasis is placed on the
more traditional Beyond the Standard Model topics that have potential for
impact in the short term, with the physics explained. We do unabashedly promote
our own phemonenology work.Comment: 10 pages, 9 figures (now fixed); Submitted for the SUSY07 proceeding
- …