10,684 research outputs found
Towards musical interaction : 'Schismatics' for e-violin and computer.
This paper discusses the evolution of the Max/MSP
patch used in schismatics (2007, rev. 2010) for electric
violin (Violectra) and computer, by composer Sam
Hayden in collaboration with violinist Mieko Kanno.
schismatics involves a standard performance paradigm
of a fixed notated part for the e-violin with sonically unfixed
live computer processing. Hayden was unsatisfied
with the early version of the piece: the use of attack
detection on the live e-violin playing to trigger stochastic
processes led to an essentially reactive behaviour in the
computer, resulting in a somewhat predictable one-toone
sonic relationship between them. It demonstrated
little internal relationship between the two beyond an
initial e-violin ‘action’ causing a computer ‘event’. The
revisions in 2010, enabled by an AHRC Practice-Led
research award, aimed to achieve 1) a more interactive
performance situation and 2) a subtler and more
‘musical’ relationship between live and processed
sounds. This was realised through the introduction of
sound analysis objects, in particular machine listening
and learning techniques developed by Nick Collins. One
aspect of the programming was the mapping of analysis
data to synthesis parameters, enabling the computer
transformations of the e-violin to be directly related to
Kanno’s interpretation of the piece in performance
Doping and energy evolution of spin dynamics in the electron-doped cuprate superconductor PrLaCeCuO
The doping and energy evolution of the magnetic excitations of the
electron-doped cuprate superconductor PrLaCeCuO
in the superconducting state is studied based on the kinetic energy driven
superconducting mechanism. It is shown that there is a broad commensurate
scattering peak at low energy, then the resonance energy is located among this
low energy commensurate scattering range. This low energy commensurate
scattering disperses outward into a continuous ring-like incommensurate
scattering at high energy. The theory also predicts a dome shaped doping
dependent resonance energy.Comment: 8 pages, 4 figures, added discussions, replotted figures, and updated
references, accepted for publication in Phys. Rev.
High-Frequency Spin Waves in YBa2Cu3O6.15
Pulsed neutron spectroscopy is used to make absolute measurements of the
dynamic magnetic susceptibility of insulating YBa2Cu3O6.15. Acoustic and
optical modes, derived from in- and out-of-phase oscillation of spins in
adjacent CuO2 planes, dominate the spectra and are observed up to 250 meV. The
optical modes appear first at 74 meV. Linear-spin-wave theory gives an
excellent description of the data and yields intra- and inter-layer exchange
constants of J_parallel =125 meV and J_perp = 11 meV respectively and a
spin-wave intensity renormalization Z_chi = 0.4.Comment: postscript, 11 pages, 4 figures, Fig.2 fixe
Random quantum codes from Gaussian ensembles and an uncertainty relation
Using random Gaussian vectors and an information-uncertainty relation, we
give a proof that the coherent information is an achievable rate for
entanglement transmission through a noisy quantum channel. The codes are random
subspaces selected according to the Haar measure, but distorted as a function
of the sender's input density operator. Using large deviations techniques, we
show that classical data transmitted in either of two Fourier-conjugate bases
for the coding subspace can be decoded with low probability of error. A
recently discovered information-uncertainty relation then implies that the
quantum mutual information for entanglement encoded into the subspace and
transmitted through the channel will be high. The monogamy of quantum
correlations finally implies that the environment of the channel cannot be
significantly coupled to the entanglement, and concluding, which ensures the
existence of a decoding by the receiver.Comment: 9 pages, two-column style. This paper is a companion to
quant-ph/0702005 and quant-ph/070200
Quantum Phase Transitions in the Itinerant Ferromagnet ZrZn
We report a study of the ferromagnetism of ZrZn, the most promising
material to exhibit ferromagnetic quantum criticality, at low temperatures
as function of pressure . We find that the ordered ferromagnetic moment
disappears discontinuously at =16.5 kbar. Thus a tricritical point
separates a line of first order ferromagnetic transitions from second order
(continuous) transitions at higher temperature. We also identify two lines of
transitions of the magnetisation isotherms up to 12 T in the plane where
the derivative of the magnetization changes rapidly. These quantum phase
transitions (QPT) establish a high sensitivity to local minima in the free
energy in ZrZn, thus strongly suggesting that QPT in itinerant
ferromagnets are always first order
A Comparison of the High-Frequency Magnetic Fluctuations in Insulating and Superconducting La2-xSrxCuO4
Inelastic neutron scattering performed at a spallation source is used to make
absolute measurements of the dynamic susceptibility of insulating La2CuO4 and
superconducting La2-xSrxCuO4 over the energy range 15<EN<350 meV. The effect of
Sr doping on the magnetic excitations is to cause a large broadening in
wavevector and a substantial change in the spectrum of the local spin
fluctuations. Comparison of the two compositions reveals a new energy scale of
22 meV in La1.86Sr0.14CuO4.Comment: RevTex, 7 Pages, 4 postscript figure
Towards musical interaction: 'Schismatics' for e-violin and computer
This paper discusses the evolution of the Max/MSP patch used in schismatics (2007, rev. 2010) for electric violin (Violectra) and computer, by composer Sam Hayden in collaboration with violinist Mieko Kanno. schismatics involves a standard performance paradigm of a fixed notated part for the e-violin with sonically unfixed live computer processing. Hayden was unsatisfied with the early version of the piece: the use of attack detection on the live e-violin playing to trigger stochastic processes led to an essentially reactive behaviour in the computer, resulting in a somewhat predictable one-toone sonic relationship between them. It demonstrated little internal relationship between the two beyond an initial e-violin ‘action’ causing a computer ‘event’. The revisions in 2010, enabled by an AHRC Practice-Led research award, aimed to achieve 1) a more interactive performance situation and 2) a subtler and more ‘musical’ relationship between live and processed sounds. This was realised through the introduction of sound analysis objects, in particular machine listening and learning techniques developed by Nick Collins. One aspect of the programming was the mapping of analysis data to synthesis parameters, enabling the computer transformations of the e-violin to be directly related to Kanno’s interpretation of the piece in performance
A neutron scattering study of the interplay between structure and magnetism in Ba(FeCo)As
Single crystal neutron diffraction is used to investigate the magnetic and
structural phase diagram of the electron doped superconductor
Ba(FeCo)As. Heat capacity and resistivity measurements have
demonstrated that Co doping this system splits the combined antiferromagnetic
and structural transition present in BaFeAs into two distinct
transitions. For =0.025, we find that the upper transition is between the
high-temperature tetragonal and low-temperature orthorhombic structures with
( K) and the antiferromagnetic transition occurs at
K. We find that doping rapidly suppresses the
antiferromagnetism, with antiferromagnetic order disappearing at . However, there is a region of co-existence of antiferromagnetism and
superconductivity. The effect of the antiferromagnetic transition can be seen
in the temperature dependence of the structural Bragg peaks from both neutron
scattering and x-ray diffraction. We infer from this that there is strong
coupling between the antiferromagnetism and the crystal lattice
- …