219 research outputs found

    Improvement of Biocompatibility of Silicone Elastomer by Surface Modification

    Get PDF
    γ-Methacryloxypropyltrimethoxysilane (γ-MPS) was grafted to silicone due to emulsion polymerization to induce Si-OH groups, in order to provide silicone with bioactivity spontaneous deposition of apatite in body fluid and to improve cytocompatibility. Apatite deposited on the grafted silicone within 7 days of soaking in 1.5 times as concentrated as the Kokubo solution. Osteoblastic cells (MC3T3-E1) were cultured on the specimens up to 7 days. After 5 days of culture, the number of MC3T3-E1 cells on the grafted specimen was much greater than that on the original specimen. These results indicated that the biocompatibility of silicone elastomer was improved by the grafting γ-MPS

    Cytocompatibility of Silicone Elastomer Treated with Hydrogenperoxide Containing Tantalum Chloride

    Get PDF
    Silicone elastomer was chemically treated at 60℃ for 7 days with 30 wt% H(2)O(2) solutions with or without TaCl(5) and soaked for various periods in a simulated body fluid(Kokubo solution) up to 21 days. Apatite formation ability of the surface of the silicone elastomer specimens was investigated with thin-film X-ray diffraction and FT-IR reflection spectroscopy. These silicone specimens did not deposit apatite or calcium phosphates, irrespective of chemical treatment. Osteoblast-like cells (MC3T3-El) derived from mouse were cultured on the specimens at 36.5℃ under 5%C0(2) and 95% humidity. Similar degree of proliferation of cells was observed at 7 days among three specimens, while the no treatment specimen after incubation for 5 days showed a lower degree of proliferation than the silicone treated with 30 wt% H(2)O(2) solutions with or without TaCl(5). Alkaline phosphatase activity of the cells proliferated on the no treatment specimen was lower than those of the silicone treated with 30 wt% H(2)O(2) solutions with or without TaCl(5). These results indicate that the cytotoxicity of the silicone could be improved by the chemical treatment with 30 wt% H(2)O(2) solutions with or without TaCl(5)

    予防をめぐる規制政治 : 日本とEUにおける化学物質政策の比較分析

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 内山 融, 東京大学教授 髙橋 直樹, 東京大学教授 加藤 淳子, 東京大学教授 森井 裕一, 東京大学准教授 鹿毛 利枝子University of Tokyo(東京大学

    Missense Mutation in the Alternative Splice Region of the PAX6 Gene in Eye Anomalies

    Get PDF
    SummaryThe PAX6 gene is involved in ocular morphogenesis, and PAX6 mutations have been detected in various types of ocular anomalies, including aniridia, Peters anomaly, corneal dystrophy, congenital cataract, and foveal hypoplasia. The gene encodes a transcriptional regulator that recognizes target genes through its paired-type DNA-binding domain. The paired domain is composed of two distinct DNA-binding subdomains, the N-terminal subdomain (NTS) and the C-terminal subdomain (CTS), which bind respective consensus DNA sequences. The human PAX6 gene produces two alternative splice isoforms that have the distinct structure of the paired domain. The insertion, into the NTS, of 14 additional amino acids encoded by exon 5a abolishes the DNA-binding activity of the NTS and unmasks the DNA-binding ability of the CTS. Thus, exon 5a appears to function as a molecular switch that specifies target genes. We ascertained a novel missense mutation in four pedigrees with Peters anomaly, congenital cataract, Axenfeldt anomaly, and/or foveal hypoplasia, which, to our knowledge, is the first mutation identified in the splice-variant region. A T→A transition at the 20th nucleotide position of exon 5a results in a Val→Asp (GTC→GAC) substitution at the 7th codon of the alternative splice region. Functional analyses demonstrated that the V54D mutation slightly increased NTS binding and decreased CTS transactivation activity to almost half
    corecore