30,631 research outputs found
Expandable coating cocoon leak detection system
Development of system and materials for detecting leaks in cocoon protective coatings are discussed. Method of applying materials for leak determination is presented. Pressurization of system following application of materials will cause formation of bubble if leak exists
A theoretical analysis of the current-voltage characteristics of solar cells
The following topics are discussed: (1) dark current-voltage characteristics of solar cells; (2) high efficiency silicon solar cells; (3) short circuit current density as a function of temperature and the radiation intensity; (4) Keldysh-Franz effects and silicon solar cells; (5) thin silicon solar cells; (6) optimum solar cell designs for concentrated sunlight; (7) nonuniform illumination effects of a solar cell; and (8) high-low junction emitter solar cells
A theoretical analysis of the current-voltage characteristics of solar cells
The correlation of theoretical and experimental data is discussed along with the development of a complete solar cell analysis. The dark current-voltage characteristics, and the parameters for solar cells are analyzed. The series resistance, and impurity gradient effects on solar cells were studied, the effects of nonuniformities on solar cell performance were analyzed
A theoretical study of heterojunction and graded band gap type solar cells
A computer program was designed for the analysis of variable composition solar cells and applied to several proposed solar cell structures using appropriate semiconductor materials. The program simulates solar cells made of a ternary alloy of two binary semiconductors with an arbitrary composition profile, and an abrupt or Gaussian doping profile of polarity n-on-p or p-on-n with arbitrary doping levels. Once the device structure is specified, the program numerically solves a complete set of differential equations and calculates electrostatic potential, quasi-Fermi levels, carrier concentrations and current densities, total current density and efficiency as functions of terminal voltage and position within the cell. These results are then recorded by computer in tabulated or plotted form for interpretation by the user
A theoretical study of heterojunction and graded band gap type solar cells
Heterojunction and graded band gap type solar cells are theoretically investigated. A computer program is developed to account for energy band gap variations and the resulting built-in electric fields which result from heterojunctions and graded energy band gaps. This program is used in studying solar cell operation under various optical irradiation conditions. Results are summarized
Proof of a generalized Geroch conjecture for the hyperbolic Ernst equation
We enunciate and prove here a generalization of Geroch's famous conjecture
concerning analytic solutions of the elliptic Ernst equation. Our
generalization is stated for solutions of the hyperbolic Ernst equation that
are not necessarily analytic, although it can be formulated also for solutions
of the elliptic Ernst equation that are nowhere axis-accessible.Comment: 75 pages (plus optional table of contents). Sign errors in elliptic
case equations (1A.13), (1A.15) and (1A.25) are corrected. Not relevant to
proof contained in pape
UAV as a Reliable Wingman: A Flight Demonstration
In this brief, we present the results from a flight experiment demonstrating two significant advances in software enabled control: optimization-based control using real-time trajectory generation and logical programming environments for formal analysis of control software. Our demonstration platform consisted of a human-piloted F-15 jet flying together with an autonomous T-33 jet. We describe the behavior of the system in two scenarios. In the first, nominal state communications were present and the autonomous aircraft maintained formation as the human pilot flew maneuvers. In the second, we imposed the loss of high-rate communications and demonstrated an autonomous safe “lost wingman” procedure to increase separation and reacquire contact. The flight demonstration included both a nominal formation flight component and an execution of the lost wingman scenario
Electronic instabilities in metal-insulator semiconductor devices
Electronic charge injection instability in silicon nitride metal-insulator-semiconductor device
A study of charge storage in silicon oxide resulting from non-penetrating electron irradiation
Charge storage in silicon dioxide resulting from electron irradiatio
In situ synthesis of size-controlled, stable silver nanoparticles within ultrashort peptide hydrogels and their anti-bacterial properties
We have developed a silver-releasing biomaterial with promising potential for wound healing applications. The material is made of ultrashort peptides which can self-assemble in water to form hydrogels. Silver nanoparticles (Ag NPs) were synthesized in situ within the biomaterial, using only UV irradiation and no additional chemical reducing agents. The synthetic strategy allows precise control of the nanoparticle size, with the network of peptide fibers preventing aggregation of Ag NPs. The biomaterial shows increased mechanical strength compared to the hydrogel control. We observed a sustained release of Ag NPs over a period of 14 days. This is a crucial prerequisite for effective anti-bacterial therapy. The ability to inhibit bacterial growth was tested using different bacterial strains, namely gram-negative Escherichia coli and Pseudomonas aeruginosa and gram-positive Staphylococcus aureus. Inhibition of bacterial growth was observed for all strains. The best results were obtained for Pseudomonas aeruginosa which is known for exhibiting multidrug resistance. Biocompatibility studies on HDFa cells, using Ag NP-containing hydrogels, did not show any significant influence on cell viability. We propose this silver-releasing hydrogel as an excellent biomaterial with great potential for applications in wound healing due to its low silver content, sustained silver nanoparticle release and biocompatibility
- …
