108 research outputs found

    Mixed Hodge polynomials of character varieties

    Full text link
    We calculate the E-polynomials of certain twisted GL(n,C)-character varieties M_n of Riemann surfaces by counting points over finite fields using the character table of the finite group of Lie-type GL(n,F_q) and a theorem proved in the appendix by N. Katz. We deduce from this calculation several geometric results, for example, the value of the topological Euler characteristic of the associated PGL(n,C)-character variety. The calculation also leads to several conjectures about the cohomology of M_n: an explicit conjecture for its mixed Hodge polynomial; a conjectured curious Hard Lefschetz theorem and a conjecture relating the pure part to absolutely indecomposable representations of a certain quiver. We prove these conjectures for n = 2.Comment: with an appendix by Nicholas M. Katz; 57 pages. revised version: New definition for homogeneous weight in Definition 4.1.6, subsequent arguments modified. Some other minor changes. To appear in Invent. Mat

    Pure O-sequences and matroid h-vectors

    Full text link
    We study Stanley's long-standing conjecture that the h-vectors of matroid simplicial complexes are pure O-sequences. Our method consists of a new and more abstract approach, which shifts the focus from working on constructing suitable artinian level monomial ideals, as often done in the past, to the study of properties of pure O-sequences. We propose a conjecture on pure O-sequences and settle it in small socle degrees. This allows us to prove Stanley's conjecture for all matroids of rank 3. At the end of the paper, using our method, we discuss a first possible approach to Stanley's conjecture in full generality. Our technical work on pure O-sequences also uses very recent results of the third author and collaborators.Comment: Contains several changes/updates with respect to the previous version. In particular, a discussion of a possible approach to the general case is included at the end. 13 pages. To appear in the Annals of Combinatoric

    Topology of character varieties and representations of quivers

    Get PDF
    In arXiv:0810.2076 we presented a conjecture generalizing the Cauchy formula for Macdonald polynomials. This conjecture encodes the mixed Hodge polynomials of the representation varieties of Riemann surfaces with semi-simple conjugacy classes at the punctures. We proved several results which support this conjecture. Here we announce new results which are consequences of those of arXiv:0810.2076

    Arithmetic harmonic analysis on character and quiver varieties

    Full text link
    We present a conjecture generalizing the Cauchy formula for Macdonald polynomials. This conjecture encodes the mixed Hodge polynomials of the character varieties of representations of the fundamental group of a Riemann surface of genus g to GL_n(C) with fixed generic semi-simple conjugacy classes at k punctures. Using the character table of GL_n(F_q) we calculate the E-polynomial of these character varieties and confirm that it is as predicted by our main conjecture. Then, using the character table of gl_n(F_q), we calculate the E-polynomial of certain associated comet-shaped quiver varieties, the additive analogues of our character variety, and find that it is the pure part of our conjectured mixed Hodge polynomial. Finally, we observe that the pure part of our conjectured mixed Hodge polynomial also equals certain multiplicities in the tensor product of irreducible representations of GL_n(F_q). This implies a curious connection between the representation theory of GL_n(F_q) and Kac-Moody algebras associated with comet-shaped, typically wild, quivers.Comment: To appear in Duke Math. Journal + a section with examples is adde

    Linear Sigma Models of H and KK Monopoles

    Full text link
    We propose a gauged linear sigma model of k H-monopoles. We also consider the T-dual of this model describing KK-monopoles and clarify the meaning of "winding coordinate" studied recently in hep-th/0507204.Comment: 13 pages, lanlmac; V3:added argument on the nature of disk instanto

    Morse theory of the moment map for representations of quivers

    Get PDF
    The results of this paper concern the Morse theory of the norm-square of the moment map on the space of representations of a quiver. We show that the gradient flow of this function converges, and that the Morse stratification induced by the gradient flow co-incides with the Harder-Narasimhan stratification from algebraic geometry. Moreover, the limit of the gradient flow is isomorphic to the graded object of the Harder-Narasimhan-Jordan-H\"older filtration associated to the initial conditions for the flow. With a view towards applications to Nakajima quiver varieties we construct explicit local co-ordinates around the Morse strata and (under a technical hypothesis on the stability parameter) describe the negative normal space to the critical sets. Finally, we observe that the usual Kirwan surjectivity theorems in rational cohomology and integral K-theory carry over to this non-compact setting, and that these theorems generalize to certain equivariant contexts.Comment: 48 pages, small revisions from previous version based on referee's comments. To appear in Geometriae Dedicat

    Tree modules and counting polynomials

    Full text link
    We give a formula for counting tree modules for the quiver S_g with g loops and one vertex in terms of tree modules on its universal cover. This formula, along with work of Helleloid and Rodriguez-Villegas, is used to show that the number of d-dimensional tree modules for S_g is polynomial in g with the same degree and leading coefficient as the counting polynomial A_{S_g}(d, q) for absolutely indecomposables over F_q, evaluated at q=1.Comment: 11 pages, comments welcomed, v2: improvements in exposition and some details added to last sectio

    On Non-Abelian Symplectic Cutting

    Full text link
    We discuss symplectic cutting for Hamiltonian actions of non-Abelian compact groups. By using a degeneration based on the Vinberg monoid we give, in good cases, a global quotient description of a surgery construction introduced by Woodward and Meinrenken, and show it can be interpreted in algebro-geometric terms. A key ingredient is the `universal cut' of the cotangent bundle of the group itself, which is identified with a moduli space of framed bundles on chains of projective lines recently introduced by the authors.Comment: Various edits made, to appear in Transformation Groups. 28 pages, 8 figure

    Multigraded Castelnuovo-Mumford Regularity

    Full text link
    We develop a multigraded variant of Castelnuovo-Mumford regularity. Motivated by toric geometry, we work with modules over a polynomial ring graded by a finitely generated abelian group. As in the standard graded case, our definition of multigraded regularity involves the vanishing of graded components of local cohomology. We establish the key properties of regularity: its connection with the minimal generators of a module and its behavior in exact sequences. For an ideal sheaf on a simplicial toric variety X, we prove that its multigraded regularity bounds the equations that cut out the associated subvariety. We also provide a criterion for testing if an ample line bundle on X gives a projectively normal embedding.Comment: 30 pages, 5 figure

    Global Structure of Moduli Space for BPS Walls

    Full text link
    We study the global structure of the moduli space of BPS walls in the Higgs branch of supersymmetric theories with eight supercharges. We examine the structure in the neighborhood of a special Lagrangian submanifold M, and find that the dimension of the moduli space can be larger than that naively suggested by the index theorem, contrary to previous examples of BPS solitons. We investigate BPS wall solutions in an explicit example of M using Abelian gauge theory. Its Higgs branch turns out to contain several special Lagrangian submanifolds including M. We show that the total moduli space of BPS walls is the union of these submanifolds. We also find interesting dynamics between BPS walls as a byproduct of the analysis. Namely, mutual repulsion and attraction between BPS walls sometimes forbid a movement of a wall and lock it in a certain position; we also find that a pair of walls can transmute to another pair of walls with different tension after they pass through.Comment: 42 pages, 11 figures; a few comments adde
    • …
    corecore