864 research outputs found
Stability of 1-D Excitons in Carbon Nanotubes under High Laser Excitations
Through ultrafast pump-probe spectroscopy with intense pump pulses and a wide
continuum probe, we show that interband exciton peaks in single-walled carbon
nanotubes (SWNTs) are extremely stable under high laser excitations. Estimates
of the initial densities of excitons from the excitation conditions, combined
with recent theoretical calculations of exciton Bohr radii for SWNTs, suggest
that their positions do not change at all even near the Mott density. In
addition, we found that the presence of lowest-subband excitons broadens all
absorption peaks, including those in the second-subband range, which provides a
consistent explanation for the complex spectral dependence of pump-probe
signals reported for SWNTs.Comment: 4 pages, 4 figure
Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels
We study anomalous heat conduction and anomalous diffusion in low dimensional
systems ranging from nonlinear lattices, single walled carbon nanotubes, to
billiard gas channels. We find that in all discussed systems, the anomalous
heat conductivity can be connected with the anomalous diffusion, namely, if
energy diffusion is , then the thermal conductivity can be expressed in terms of the system size
as with . This result predicts that
a normal diffusion () implies a normal heat conduction obeying the
Fourier law (), a superdiffusion () implies an anomalous
heat conduction with a divergent thermal conductivity (), and more
interestingly, a subdiffusion () implies an anomalous heat
conduction with a convergent thermal conductivity (), consequently,
the system is a thermal insulator in the thermodynamic limit. Existing
numerical data support our theoretical prediction.Comment: 15 Revtex pages, 16 figures. Invited article for CHAOS focus issue
commemorating the 50th anniversary of the Fermi-Pasta-Ulam (FPU) mode
Thermodynamic formalism for the Lorentz gas with open boundaries in dimensions
A Lorentz gas may be defined as a system of fixed dispersing scatterers, with
a single light particle moving among these and making specular collisions on
encounters with the scatterers. For a dilute Lorentz gas with open boundaries
in dimensions we relate the thermodynamic formalism to a random flight
problem. Using this representation we analytically calculate the central
quantity within this formalism, the topological pressure, as a function of
system size and a temperature-like parameter \ba. The topological pressure is
given as the sum of the topological pressure for the closed system and a
diffusion term with a \ba-dependent diffusion coefficient. From the
topological pressure we obtain the Kolmogorov-Sinai entropy on the repeller,
the topological entropy, and the partial information dimension.Comment: 7 pages, 5 figure
Hall viscosity, orbital spin, and geometry: paired superfluids and quantum Hall systems
The Hall viscosity, a non-dissipative transport coefficient analogous to Hall
conductivity, is considered for quantum fluids in gapped or topological phases.
The relation to mean orbital spin per particle discovered in previous work by
one of us is elucidated with the help of examples, using the geometry of shear
transformations and rotations. For non-interacting particles in a magnetic
field, there are several ways to derive the result (even at non-zero
temperature), including standard linear response theory. Arguments for the
quantization, and the robustness of Hall viscosity to small changes in the
Hamiltonian that preserve rotational invariance, are given. Numerical
calculations of adiabatic transport are performed to check the predictions for
quantum Hall systems, with excellent agreement for trial states. The
coefficient of k^4 in the static structure factor is also considered, and shown
to be exactly related to the orbital spin and robust to perturbations in
rotation invariant systems also.Comment: v2: Now 30 pages, 10 figures; new calculation using disk geometry;
some other improvements; no change in result
Polarization dependence of coherent phonon generation and detection in highly-aligned single-walled carbon nanotubes
We have investigated the polarization dependence of the generation and
detection of radial breathing mode (RBM) coherent phonons (CP) in
highly-aligned single-walled carbon nanotubes. Using polarization-dependent
pump-probe differential-transmission spectroscopy, we measured RBM CPs as a
function of angle for two different geometries. In Type I geometry, the pump
and probe polarizations were fixed, and the sample orientation was rotated,
whereas, in Type II geometry, the probe polarization and sample orientation
were fixed, and the pump polarization was rotated. In both geometries, we
observed a very nearly complete quenching of the RBM CPs when the pump
polarization was perpendicular to the nanotubes. For both Type I and II
geometries, we have developed a microscopic theoretical model to simulate CP
generation and detection as a function of polarization angle and found that the
CP signal decreases as the angle goes from 0 degrees (parallel to the tube) to
90 degrees (perpendicular to the tube). We compare theory with experiment in
detail for RBM CPs created by pumping at the E44 optical transition in an
ensemble of single-walled carbon nanotubes with a diameter distribution
centered around 3 nm, taking into account realistic band structure and
imperfect nanotube alignment in the sample
Direct Observation of Sub-Poissonian Number Statistics in a Degenerate Bose Gas
We report the direct observation of sub-Poissonian number fluctuation for a
degenerate Bose gas confined in an optical trap. Reduction of number
fluctuations below the Poissonian limit is observed for average numbers that
range from 300 to 60 atoms.Comment: 5 pages, 4 figure
Collective Antenna Effects in the Terahertz and Infrared Response of Highly Aligned Carbon Nanotube Arrays
We study macroscopically-aligned single-wall carbon nanotube arrays with
uniform lengths via polarization-dependent terahertz and infrared transmission
spectroscopy. Polarization anisotropy is extreme at frequencies less than
3 THz with no sign of attenuation when the polarization is perpendicular
to the alignment direction. The attenuation for both parallel and perpendicular
polarizations increases with increasing frequency, exhibiting a pronounced and
broad peak around 10 THz in the parallel case. We model the electromagnetic
response of the sample by taking into account both radiative scattering and
absorption losses. We show that our sample acts as an effective antenna due to
the high degree of alignment, exhibiting much larger radiative scattering than
absorption in the mid/far-infrared range. Our calculated attenuation spectrum
clearly shows a non-Drude peak at 10 THz in agreement with the
experiment.Comment: 5 pages, 5 figure
Condensation of Ideal Bose Gas Confined in a Box Within a Canonical Ensemble
We set up recursion relations for the partition function and the ground-state
occupancy for a fixed number of non-interacting bosons confined in a square box
potential and determine the temperature dependence of the specific heat and the
particle number in the ground state. A proper semiclassical treatment is set up
which yields the correct small-T-behavior in contrast to an earlier theory in
Feynman's textbook on Statistical Mechanics, in which the special role of the
ground state was ignored. The results are compared with an exact quantum
mechanical treatment. Furthermore, we derive the finite-size effect of the
system.Comment: 18 pages, 8 figure
- …